Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders.

Pharmaceuticals (Basel)

Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inherited retinal disorders (IRDs) represent a group of challenging genetic conditions that often lead to severe visual impairment or blindness. The complexity of these disorders, arising from their diverse genetic causes and the unique structural and functional aspects of retinal cells, has made developing effective treatments particularly challenging. Recent advancements in gene therapy, especially non-viral nucleic acid delivery systems like liposomes, solid lipid nanoparticles, dendrimers, and polymersomes, offer promising solutions. These systems provide advantages over viral vectors, including reduced immunogenicity and enhanced targeting capabilities. This review delves into introduction of common IRDs such as Leber congenital amaurosis, retinitis pigmentosa, Usher syndrome, macular dystrophies, and choroideremia and critically assesses current treatments including neuroprotective agents, cellular therapy, and gene therapy along with their limitations. The focus is on the emerging role of non-viral delivery systems, which promise to address the current limitations of specificity, untoward effects, and immunogenicity in existing gene therapies. Additionally, this review covers recent clinical trial developments in gene therapy for retinal disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768406PMC
http://dx.doi.org/10.3390/ph18010087DOI Listing

Publication Analysis

Top Keywords

delivery systems
12
retinal disorders
12
gene therapy
12
non-viral delivery
8
inherited retinal
8
systems
4
systems transport
4
transport nucleic
4
nucleic acids
4
acids inherited
4

Similar Publications

Complexity and Health Care Utilization in Infant ESKD.

Kidney360

September 2025

Department of Pediatrics, Division of Pediatric Nephrology, Baylor College of Medicine, Houston, TX, United States.

Background: Dialysis in neonates with ESKD is often associated with multiple comorbidities and the need for more intensified dialysis regimens. With recent advances in prenatal interventions and infant specific KRT, survival of neonates with ESKD has improved over the last decade. Little is known however about the impact on the health care system of improved survival in this population.

View Article and Find Full Text PDF

S-nitrosylation of pVHL regulates β adrenergic receptor function.

Proc Natl Acad Sci U S A

September 2025

Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.

The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Purpose: Glioblastoma (GBM) remains one of the most aggressive primary brain tumors with poor survival outcomes and a lack of approved therapies. A promising novel approach for GBM is the application of photodynamic therapy (PDT), a localized, light-activated treatment using tumor-selective photosensitizers. This narrative review describes the mechanisms, delivery systems, photosensitizers, and available evidence regarding the potential of PDT as a novel therapeutic approach for GBM.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.

View Article and Find Full Text PDF