Hybridization Design and High-Throughput Screening of Peptides with Immunomodulatory and Antioxidant Activities.

Int J Mol Sci

Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the increasing recognition of the role of immunomodulation and oxidative stress in various diseases, designing peptides with both immunomodulatory and antioxidant activities has emerged as a promising therapeutic strategy. In this study, a hybridization design was applied as a powerful method to obtain multifunctional peptides. A total of 40 peptides with potential immunomodulatory and antioxidant activities were designed and screened. First, molecular docking was employed to screen peptides with a high binding affinity to MD2, a key receptor protein in the NFκB immune pathway. For the in vitro high-throughput screening, we constructed a reporter gene-based stable cell line, IPEC-J2-Lucia ARE cells, which was subsequently used to screen peptides with antioxidant activity. Furthermore, the biocompatibility, immunomodulatory, and antioxidant activities of these peptides were assessed. Among the candidates, the hybrid peptide VA exhibited the strongest immune-enhancing activity through the activation of the NF-κB pathway and significant antioxidant activity via the Nrf2-ARE pathway. Additionally, VA demonstrated protective effects against HO-induced oxidative damage in HepG2 cells. This study not only demonstrates the potential of peptide hybridization, but also develops a screening platform for multifunctional peptides. It provides a new tool for the treatment of autoimmune diseases and oxidative stress-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764585PMC
http://dx.doi.org/10.3390/ijms26020505DOI Listing

Publication Analysis

Top Keywords

immunomodulatory antioxidant
16
antioxidant activities
16
hybridization design
8
high-throughput screening
8
peptides
8
peptides immunomodulatory
8
multifunctional peptides
8
screen peptides
8
antioxidant activity
8
antioxidant
6

Similar Publications

Jasmine tea: unveiling the secrets of processing, flavor characteristics, and potential health benefits.

Crit Rev Food Sci Nutr

September 2025

Key Laboratory of Tea Science of Ministry of Education and Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha, China.

Jasmine tea, a further processing tea made by scenting green, black, oolong, or other tea with jasmine flowers, is widely appreciated worldwide for its fragrant aroma, refreshing taste, and beneficial health effects. The production of jasmine tea is a meticulous and complex process that involves chemical reactions, physical adsorption, and flavor interaction effects at the sensory level between jasmine and tea. This paper provides a comprehensive review of the research on the processing technology, characteristic aroma formation, nonvolatile compounds, and health benefits of jasmine tea.

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF

Metal ions play a vital role in the health of the modern human body, but deficiencies in mineral elements have created health risks worldwide. However, mineral supplements currently available on the market are very limited due to poor solubility, low bioavailability, and the possibility of adverse effects on the gastrointestinal tract. In contrast, protein-derived metal-chelating peptides have received a lot of attention because of their stability, safety, and very high bioavailability.

View Article and Find Full Text PDF

Gastrointestinal eubiosis is essential for maintaining overall host wellbeing. Post-weaning diarrhea (PWD) is a common issue in pig development, arising from weaning stress, which disrupts the gut microbiota balance and increases susceptibility to infections. The primary bacterial pathogen linked to PWD is enterotoxigenic (ETEC).

View Article and Find Full Text PDF

Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).

View Article and Find Full Text PDF