Temperature Control of Quartz-Glass Melting Areas in Laser Additive Manufacturing.

Micromachines (Basel)

Lightweight Optics and Advanced Materials Technology Center, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Direct energy deposition is an additive technology that can quickly manufacture irregularly shaped quartz-glass devices. Based on this technology and coaxial laser/wire feeding, open-loop tests were conducted under different process parameters. A closed-loop temperature control system was designed and built for the molten pool temperature in quartz-glass additive manufacturing. It was based on a PID (proportional-integral-derivative) control algorithm for adjusting laser power. Changes in the macroscopic morphology, microstructure, and other qualities of the final additive result before and after the temperature control of the quartz glass were examined. Relative to constant laser powers of 120 W and 140 W, the temperature control of the multi-pass single-layer lateral additives produced dense surface microstructures of the additively produced quartz glass, and the molding quality was better.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767920PMC
http://dx.doi.org/10.3390/mi16010029DOI Listing

Publication Analysis

Top Keywords

temperature control
16
additive manufacturing
8
quartz glass
8
temperature
5
control quartz-glass
4
quartz-glass melting
4
melting areas
4
areas laser
4
additive
4
laser additive
4

Similar Publications

Background: Phrenic nerve injury during mediastinal tumor resection can lead to significant postoperative diaphragmatic dysfunction. Current intraoperative protection techniques are imprecise and lack real-time feedback. We aimed to develop and validate a quantifiable, multimodal neuroprotective strategy.

View Article and Find Full Text PDF

Thermoelectric technology has significant applications in waste heat harvesting and temperature control of electronic devices. PbS has long been seen as a robust candidate for large-scale thermoelectric applications due to its low cost and high mechanical strength. However, the low ZT near room temperature hinders its further application.

View Article and Find Full Text PDF

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

Influenza viruses can be aerosolized when slaughtering infected chickens, which increases the risk of zoonotic transmission. We conducted pilot experiments to measure the concentrations of airborne particles <2.5 μm during slaughtering and defeathering of chickens to help identify methods that can minimize workers' exposure to potentially hazardous aerosol particles.

View Article and Find Full Text PDF

The well-known technique of microtomy, which is an essential cutting tool, was first developed for light and transmission electron microscope uses, but it is currently also utilized to prepare specimens for atomic force microscopy (AFM), ion microscopy using a focused ion beam (FIB), and scanning electron microscopy (SEM). Ultramicrotomy can only be used on soft substances and metals that are sufficiently ductile to be cut with a diamond knife. Before being sliced by a microtome, many soft materials must first go through numerous preparatory processes.

View Article and Find Full Text PDF