Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder. We report three cases from two consanguineous families with varying clinical presentations of PEBAT syndrome due to homozygous pathogenic variants in the TBCD. In Family 1, two siblings (F1C1 and F1C2) harboring the homozygous c.2314C > T, p.(Arg772Cys) variant exhibited severe neurodevelopmental regression, spastic tetraplegia, seizures, and brain atrophy. In contrast, Family 2, Case 3 (F2C3), with the homozygous c.230A > G, p.(His77Arg) variant, presented a milder phenotype, including absence seizures, slight developmental delay, and less pronounced neuroanatomical abnormalities. These findings contribute to the expanding phenotypic spectrum of PEBAT and suggesting that modifier genes or epigenetic factors may influence disease severity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10048-025-00799-7DOI Listing

Publication Analysis

Top Keywords

brain atrophy
12
progressive encephalopathy
8
encephalopathy brain
8
atrophy thin
8
thin corpus
8
corpus callosum
8
pathogenic variants
8
severe neurodevelopmental
8
phenotypic variability
4
variability progressive
4

Similar Publications

Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.

View Article and Find Full Text PDF

Cortical Thinning and Microstructural Integrity Disruption in White Matter Hyperintensities.

Brain Res Bull

September 2025

Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, 230601, He Fei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, 230032, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230032, Hefei,

Background: The relationships between white matter microstructure, cortical atrophy, and cognitive function in cerebral small vessel disease (CSVD)-related white matter hyperintensities (WMHs) patients are unclear.

Methods: 71 right-handed WMHs patients (mild, n=23; moderate, n=27; severe, n=21) and 35 healthy controls were included. Tract-based spatial statistics (TBSS) assessed microstructure via fractional anisotropy (FA) and mean diffusivity (MD).

View Article and Find Full Text PDF

Background And Objectives: While reductions in optical coherence tomography (OCT) pRNFL and ganglion cell-inner plexiform layer thicknesses have been shown to be associated with brain atrophy in adult-onset MS (AOMS) cohorts, the relationship between OCT and brain MRI measures is less established in pediatric-onset MS (POMS). Our aim was to examine the associations of OCT measures with volumetric MRI in a cohort of patients with POMS to determine whether OCT measures reflect CNS neurodegeneration in this patient population, as is seen in AOMS cohorts.

Methods: This was a cross-sectional study with retrospective ascertainment of patients with POMS evaluated at a single center with expertise in POMS and neuro-ophthalmology.

View Article and Find Full Text PDF

Compared with more typical late-onset Alzheimer's disease (AD), the mechanisms of young-onset AD (YOAD; age of symptom onset <65 years) remain less understood. Using resting-state functional MRI data and dynamic causal modeling techniques, Sacu et al. demonstrate that individuals with YOAD (amnestic AD or posterior cortical atrophy) exhibit alterations in effective (i.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein. Several therapeutic approaches boosting SMN are approved for human patients, delivering remarkable improvements in lifespan and symptoms. However, emerging phenotypes, including neurodevelopmental comorbidities, are being reported in some treated SMA patients, indicative of alterations in brain development.

View Article and Find Full Text PDF