Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The addition of acetic acid to cultures is usually used to inhibit the growth of heterotrophic bacteria; however, we found that acetic acid also promotes the growth of CICC41233, as well as the synthesis of pigments (MPs). Compared with no acetic acid or HCl addition, the diameter of CICC41233 colonies increased significantly under acetic acid conditions. On the sixth day of fermentation, the yield of total pigments in increased significantly by 9.97 times (compared with no acetic acid) and 13.9 times (compared with hydrochloric acid). The transcriptomics data showed that the differentially expressed genes between with acetic acid and without acetic acid were mainly involved in starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, TCA cycle, and oxidative phosphorylation, and that these differentially expressed genes were not involved in amino acid metabolism. Gene expression analysis showed that the relative expression levels of MP synthesis genes (, , , , , and ) were significantly up-regulated under acetic acid conditions. This study clarified the metabolic mechanism of acetic acid promoting the growth of and the synthesis of MPs, which provided some theoretical guidance for the large-scale production of MPs in the industry in future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767103PMC
http://dx.doi.org/10.3390/jof11010049DOI Listing

Publication Analysis

Top Keywords

acetic acid
40
acid
12
acetic
10
mechanism acetic
8
compared acetic
8
acid conditions
8
times compared
8
differentially expressed
8
expressed genes
8
transcriptome analysis
4

Similar Publications

This study investigates the impact of a defined starter culture on the fermentation of cocoa beans and its influence on the production of volatile and non-volatile compounds related to sensory quality. A microbial consortium comprising Saccharomyces cerevisiae, Pichia kudriavzevii, Levilactobacillus brevis, and Acetobacter okinawensis was selected based on their enzymatic activity and acid regulation properties. Fermentation trials showed that the starter culture enhanced the synthesis of key volatile compounds, particularly esters and higher alcohols, such as 2-phenylethanol and 2-phenylethyl acetate, which contribute floral and fruity aromas.

View Article and Find Full Text PDF

Acute or chronic liver damage can result in Hepatic Encephalopathy (HE), a potentially fatal neuropsychiatric condition that leads to cerebral and neurological alterations. Dapagliflozin (DAPA), an orally active Sodium/Glucose cotransporter 2 inhibitor with long duration of action. The study aim was to evaluate the potential protective impact of DAPA against HE caused by Thioacetamide (TAA) in rats.

View Article and Find Full Text PDF

Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.

View Article and Find Full Text PDF

Molecular Hybrid Bridging for Efficient and Stable Inverted Perovskite Solar Cells without a Pre-Deposited Hole Transporting Layer.

Adv Mater

September 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.

Establishing a low-resistance perovskite/ITO contact using self-assembled molecules (SAMs) is crucial for efficient hole transport in perovskite solar cells (PSCs) without a pre-deposited hole-transporting layer. However, SAMs at the buried interface often encounter issues like nonuniform distribution and molecular aggregation during the extrusion process, leading to significant energy loss. Herein, a molecular hybrid bridging strategy by incorporating a novel small molecule is proposed, (2-aminothiazole-4-yl)acetic acid (ATAA), featuring a thiazole ring and carboxylic acid group, along with the commonly used SAM, 4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), into the perovskite precursor to synergistically optimize the buried interface.

View Article and Find Full Text PDF

Elevated acidity from natural and anthropogenic sources can be a significant stressor for plants, affecting essential processes such as nutrient uptake and growth. While low pH (< 4) is generally considered stressful for plants, differential impacts of distinct acid types-organic versus inorganic, strong versus weak-on plant growth and development remain unclear. To address this knowledge gap, we evaluated the responses of two Brassicaceae species to organic (acetic) and inorganic (hydrochloric, sulfuric) acids at three pH levels (pH 2.

View Article and Find Full Text PDF