98%
921
2 minutes
20
Background: Lipids are vital biomolecules involved in the formation of various biofilms. Seizures can cause changes in lipid metabolism in the brain. In-depth studies at multiple levels are urgently needed to elucidate lipid composition, distribution, and metabolic pathways in the brain after seizure.
Methods: In this research, a cutting-edge targeted quantitative lipidomics study was conducted on the hippocampal tissues of six rats with temporal lobe epilepsy and six normal rats. Accurate lipid quantification based on linear equations was calculated using an internal standard. The lipids were quantitatively and qualitatively analyzed by ultra-high performance liquid chromatography (UPLC) and mass spectrometry (MS).
Results: A total of 21 lipid classes were identified. Among them, the most abundant were triacylglycerol (TG), phosphatidyl ethanolamine (PE-P), and fatty acids (FA). Cholesteryl ester (ChE) exhibits the most considerable difference between the normal and epileptic samples. ChE was found to be the most significantly upregulated lipid, while FA was observed to be the most significantly downregulated lipid.
Conclusion: Based on the absolute quantitative analysis of lipids in rat hippocampal specimens, the contents and change trends of different lipids were observed. Upregulation of ChE and dihydroceramide (DHCer) was observed, and an analysis of the distribution changes elucidated the causes and possible molecular mechanisms of lipid accumulation in temporal lobe epilepsy. The results and methods described provide a comprehensive analysis of lipid metabolism in temporal lobe epilepsy and a new therapeutic target for the treatment of epilepsy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754250 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1531524 | DOI Listing |
J Magn Reson Imaging
September 2025
School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.
Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).
Study Type: Prospective, longitudinal.
Cochrane Database Syst Rev
September 2025
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
Background: Radiotherapy is the mainstay of treatment for head and neck cancer (HNC) but may induce various side effects on surrounding normal tissues. To reach an optimal balance between tumour control and toxicity prevention, normal tissue complication probability (NTCP) models have been reported to predict the risk of radiation-induced side effects in patients with HNC. However, the quality of study design, conduct, and analysis (i.
View Article and Find Full Text PDFFront Hum Neurosci
August 2025
Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
Background: Slapping automatism is a type of automatism observed during epileptic seizures, but its underlying electrophysiological mechanisms remain poorly understood. Stereo-electroencephalography (SEEG) provides a unique opportunity to investigate the associated cortical areas with epileptiform discharges during the slapping automatism.
Case Report: We report five cases of drug-resistant epilepsy in which SEEG recordings captured slapping automatism.
Alcohol Clin Exp Res (Hoboken)
September 2025
Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, Massachusetts, USA.
Background: Examining youth before engagement in risky behaviors may help identify neurobiological signatures that prospectively predict susceptibility to initiating and escalating alcohol and other substance use. Given that frontal and medial temporal (e.g.
View Article and Find Full Text PDFNat Commun
September 2025
Columbia University, Department of Psychology, New York, NY, USA.
Racial stereotypes have been shown to bias the identification of innocuous objects, making objects like wallets or tools more likely to be identified as weapons when encountered in the presence of Black individuals. One mechanism that may contribute to these biased identifications is a transient perceptual distortion driven by racial stereotypes. Here we provide neuroimaging evidence that a bias in visual representation due to automatically activated racial stereotypes may be a mechanism underlying this phenomenon.
View Article and Find Full Text PDF