Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: This study explored the use of computer-aided diagnosis (CAD) systems to enhance mammography image quality and identify potentially suspicious areas, because mammography is the primary method for breast cancer screening. The primary aim was to find the best combination of preprocessing algorithms to enable more precise classification and interpretation of mammography images because the selected preprocessing algorithms significantly impact the effectiveness of later classification and segmentation processes.

Material And Methods: The study utilised the mini-MIAS database of mammography images and examined the impact of applying various preprocessing method combinations to differentiate between malignant and benign breast lesions. The preprocessing steps included removing label information and pectoral muscle, followed by applying algorithms such as contrast-limited adaptive histogram equalisation (CLAHE), unsharp masking (USM), and median filtering (MF) to enhance image resolution and visibility. After preprocessing, a -means clustering technique was used to extract potentially suspicious regions, and features were then extracted from these regions of interest (ROIs). The extracted feature datasets were classified using various machine learning algorithms, including artificial neural networks, random forest, and support vector machines.

Results: The findings showed that the combination of CLAHE, USM, and MF preprocessing algorithms resulted in the highest classification performance, outperforming the use of CLAHE alone.

Conclusions: The integration of advanced preprocessing techniques with machine learning significantly enhances the accuracy of mammography analysis, facilitating more precise differentiation between malignant and benign breast lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756364PMC
http://dx.doi.org/10.5114/pjr/195523DOI Listing

Publication Analysis

Top Keywords

machine learning
12
preprocessing algorithms
12
breast cancer
8
preprocessing
8
mammography analysis
8
mammography images
8
malignant benign
8
benign breast
8
breast lesions
8
mammography
6

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF