A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluation of the genetic diversity and population structure of 5 pheasant breeds in Shanghai. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The genetics of pheasant breeds in Chinese farms has not been investigated yet. Understanding their genetic diversity and population structure is important for future advancements in pheasant breeding. In this study, the whole-genome resequencing was used to analyze a total of 352 samples from 5 pheasant species (American pheasant, White pheasant, Green pheasant, Shenhong pheasant, and Fengxian blue pheasant). The average effective population size (Ne) was 45.82. The average of expected heterozygosity (He) and observed heterozygosity (Ho) was 0.28514 and 0.27938, respectively. The Green pheasant had the lowest values of He (0.2730) and Ho (0.2692), whereas Fengxian blue pheasant had the highest values of He (0.2885) and Ho (0.2937), respectively. In addition, the 5 pheasant breeds could be divided into four different genetic populations. A similar genetic structure was also observed between American pheasant and Shenhong pheasant, whereas the other three pheasant breeds (White pheasant, Green pheasant, and Fengxian blue pheasant) exhibited obviously different genetic structures. Further analysis of population structure showed that some individuals among all 5 pheasant breeds had a high genetic distance and weak genetic relationships. A certain degree of inbreeding might exist in the population of White pheasant. Thus, effective breeding and conservation plans should be conducted to retain the genetic distinctiveness for White pheasant. Our data is of great significance for promoting the conservation and development of pheasant genetic resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788857PMC
http://dx.doi.org/10.1016/j.psj.2025.104819DOI Listing

Publication Analysis

Top Keywords

pheasant
22
pheasant breeds
20
white pheasant
16
population structure
12
green pheasant
12
fengxian blue
12
blue pheasant
12
genetic diversity
8
diversity population
8
genetic
8

Similar Publications