Advanced Quantitative Phase Microscopy Achieved with Spatial Multiplexing and a Metasurface.

Nano Lett

Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quantitative optical phase information provides an alternative method to observe biomedical properties, where conventional phase imaging fails. Phase retrieval typically requires multiple intensity measurements and iterative computations to ensure uniqueness and robustness against detection noise. To increase the measurement speed, we propose a single-shot quantitative phase imaging method with metasurface optics that can be conveniently integrated into conventional imaging systems with minimal modification. The improvement of the measurement speed is simultaneously made possible by combining deep learning with the transport-of-intensity equation. As a proof-of-concept, we demonstrate phase retrieval on both calibrated phase objects and biological specimens by using an imaging system integrated with our metasurface. When combined with the matched neural network, the system yields result with errors as low as 5% and increased space-bandwidth-product. A multitude of commercial applications can benefit from the compactness and rapid implementation of our proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c06039DOI Listing

Publication Analysis

Top Keywords

quantitative phase
8
phase imaging
8
phase retrieval
8
measurement speed
8
phase
7
advanced quantitative
4
phase microscopy
4
microscopy achieved
4
achieved spatial
4
spatial multiplexing
4

Similar Publications

A rapid and specific liquid chromatography-tandem mass spectrometry method with a wide linear range was developed and validated for the simultaneous quantification of Vitamin K1 (VK1) trans- and cis- isomers in human plasma. Bovine serum albumin solution (15%) served as a surrogate matrix for preparing the calibrators to establish the quantitative curves. After liquid-liquid extraction, VK1 trans- and cis- isomers in plasma samples were separated on a ChromCore C30 column (15 cm × 4.

View Article and Find Full Text PDF

RF phase modulation improves quantitative transient state sequences under constrained conditions.

MAGMA

September 2025

Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3585CX, Utrecht, The Netherlands.

Objective: Within gradient-spoiled transient-state MR sequences like Magnetic Resonance Fingerprinting or Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT), it is examined whether an optimized RF phase modulation can help to improve the precision of the resulting relaxometry maps.

Methods: Using a Cramer-Rao based method called BLAKJac, optimized sequences of RF pulses have been generated for two scenarios (amplitude-only modulation and amplitude + phase modulation) and for several conditions. These sequences have been tested on a phantom, a healthy human brain and a healthy human leg, to reconstruct parametric maps ( and ) as well as their standard deviations.

View Article and Find Full Text PDF

The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.

View Article and Find Full Text PDF

From intuitive to structured quality control: implementing checklist-based peer reviews of reports in Norwegian digital forensic units.

Sci Justice

September 2025

Norwegian Fire and Rescue Academy, Erling Johannessens vei 1, 9441 Fjelldal, Norway.

Digital evidence plays a critical role in solving crimes, making its quality essential. This study examines the implementation of a structured, checklist-based peer review process for technical analysis reports within digital forensic units of the Norwegian Police. It incorporates two data collections: a qualitative study based on interviews following a trial implementation, and a quantitative survey assessing peer review practices one year after the trial.

View Article and Find Full Text PDF

NR1I3 inhibits colorectal cancer growth by enhancing PCK1-mediated gluconeogenesis.

Chem Biol Interact

September 2025

Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China. Electronic address:

There is increasing evidence that nuclear receptor subfamily 1 group I member 3 (NR1I3) plays a significant role in the progression of many malignancies. However, it is unclear whether NR1I3 suppresses colorectal cancer (CRC) growth or alters gluconeogenesis. Western blotting, flow cytometry analysis, cell proliferation, colony formation assays, quantitative real-time polymerase chain reaction (qRT‒PCR), gluconeogenesis tests, and animal models were used to examine the functional role of NR1I3 in CRC cells.

View Article and Find Full Text PDF