Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rapid warming in northern lands has led to increased ecosystem carbon uptake. It remains unclear, however, whether and how the beneficial effects of warming on carbon uptake will continue with climate change. Moreover, the role played by water stress in temperature control on ecosystem carbon uptake remains highly uncertain. Here, we systematically explored the trend in the temperature control on gross primary production (measured by "S") across northern lands (> 15°N) using a standardized multiple regression approach by controlling other covarying factors. We estimated S using three types of GPP datasets: four satellite-derived GPP datasets, FLUXNET tower observed GPP datasets, and GPP outputs from nine CMIP6 models. Our analysis revealed a significant positive-to-negative transition around the year 2000 in the trend of S. This transition was primarily driven by synchronized changes in soil water content over time and space. The S trend transition covered about 32% of northern lands, especially in grasslands and coniferous forests where leaf water mediation and structural overshoot accelerated the drought-induced transition, respectively. In the future, widespread negative S trends are projected in northern lands corresponding with decreasing soil water availability. These findings highlight the shrinking temperature control on northern land carbon uptake in a warmer and drier climate.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.70032DOI Listing

Publication Analysis

Top Keywords

carbon uptake
20
northern lands
20
temperature control
16
ecosystem carbon
12
gpp datasets
12
control ecosystem
8
uptake remains
8
trend transition
8
soil water
8
northern
6

Similar Publications

Photothermal/GSH-dual-responsive organic quantum dots enabling traceable DNA delivery.

Int J Biol Macromol

September 2025

School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:

Quantum dots, with their superior intrinsic fluorescence and photostability, are emerging as a promising option for cancer gene therapy, diagnosis, and imaging. However, low gene delivery efficiency, insufficient targeting, and responsiveness remain challenges. To address these issues, PEI-based carbon quantum dots (CPNCs) were constructed by crosslinking polyethylenimine quantum dots (PQDs) with carbon quantum dots (CQDs) via disulfide bonds.

View Article and Find Full Text PDF

Carbon-negative wastewater treatment via CO-to-acetate microbial electrosynthesis coupled with biological nitrogen removal.

Water Res

September 2025

College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University - Quzhou, Quzhou 324000, China. Electronic address:

This study presents a renewable electricity-driven microbial electrosynthesis (MES) system integrated with biological nitrogen removal (BNR) to achieve carbon-negative wastewater treatment. The MES system converts CO₂ into acetate, which is directly utilized as an internal carbon source for denitrification. Incorporation of biochar-derived conductive materials enhanced electron transfer, increasing acetate productivity to 1.

View Article and Find Full Text PDF

Populations of the acidophilic purple nonsulfur bacterium were identified in two geographically distinct thermal areas in Yellowstone National Park (Wyoming, USA), as confirmed by 16S rRNA gene sequencing and detection of characteristic methoxylated ketocarotenoids. Microcosm-based carbon uptake assays where oxygenic photosynthesis was excluded via addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea yielded a light-driven dissolved inorganic carbon (DIC) assimilation rate (7 ± 2 mg C g C h) comparable to those of highly productive algal mats in acidic hot springs, suggesting that may be performing photoautotrophy at the time of the assay. Rates of acetate assimilation were more than two orders of magnitude lower than DIC assimilation and did not differ between light and dark treatments, indicating photoheterotrophic use of acetate was not occurring, though photoheterotrophic assimilation of other organic compounds cannot be excluded.

View Article and Find Full Text PDF

Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.

View Article and Find Full Text PDF

Dual-functional hydrochar via hydrothermal carbonization for norfloxacin removal: Fractal adsorption kinetics and mechanism elucidation.

Sci Total Environ

September 2025

Laboratoire Physico-Chimie des Matériaux, Substances Naturelles et Environnement, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco.

Escalating concentrations of norfloxacin (NFX) in surface and wastewaters demand sustainable remediation strategies. In this study, dual-functional hydrochars were synthesized from argan nut shells (ArNS) via hydrothermal carbonization (HTC), with process conditions optimized by varying temperature (150-200 °C) and residence time (2-6 h). Among the materials, H1:5@150-4-prepared at 150 °C for 4 h with a biomass-to-water ratio of 1:5-exhibited the best performance, achieving a monolayer NFX adsorption capacity of 27.

View Article and Find Full Text PDF