Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chronic kidney disease (CKD) is associated with chronic low-grade inflammation, but the primary factors triggering this inflammation remain unclear. Extracellular or cell-free DNA (exDNA) originates from virtually all tissues, being released during cell death, and stimulates the innate immune system. Our study was designed as an observational, cross-sectional cohort study of children with CKD (both before and after kidney transplantation) and controls to analyze associations between exDNA, markers of inflammation, and cardiovascular health. Extracellular DNA (total, nuclear, and mitochondrial) was analyzed in plasma using fluorometry and real-time PCR. We found that children with CKD after kidney transplantation had higher concentrations of total and nuclear extracellular DNA (total exDNA and nc_exDNA) in plasma compared to controls. In univariate analysis, levels of interleukin-6 (IL-6), antimicrobial peptide cathelicidin (LL-37), soluble vascular cell adhesion molecule-1 (VCAM-1) and left ventricular mass index (LVMI) were positively correlated with total exDNA and nc_exDNA concentrations. Multivariate analysis revealed LVMI as the only independent variable associated with high levels of both total exDNA and nc_exDNA. We believe that our results contribute new knowledge to the pathogenesis of CKD and its complications and may help identify new treatment targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751163PMC
http://dx.doi.org/10.1038/s41598-025-86857-4DOI Listing

Publication Analysis

Top Keywords

extracellular dna
12
total exdna
12
exdna nc_exdna
12
markers inflammation
8
left ventricular
8
ventricular mass
8
chronic kidney
8
kidney disease
8
children ckd
8
ckd kidney
8

Similar Publications

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are DNA-protein structures released during a form of programmed neutrophil death known as NETosis. While NETs have been implicated in both tumor inhibition and promotion, their functional role in cancer remains ambiguous. In this study, we compared the NET-forming capacity and functional effects of NETs derived from lung cancer (LC) patients and healthy donors (H).

View Article and Find Full Text PDF

The Essence of Nature Can be the Simplest (6)-Lifespan: Determined by Extracellular Fenton Chemistry.

Chem Biodivers

September 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & Yunnan Key Laboratory of Basic Research and Innovative Application for Green Biological Production, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunm

Understanding the determinants of lifespan is a central objective in biology. Lifespan is shaped by dynamic, stage-specific changes in metabolism, energy allocation, and genome integrity. Heart rate serves as a physiological marker that reflects both life stage and metabolic state.

View Article and Find Full Text PDF

Neutrophils play a complex role in the pathogenesis of chronic liver disease and have been linked to both liver damage and injury resolution. Recent reports propose that neutrophils drive liver injury and fibrosis through the formation of neutrophil extracellular traps (NETs). This study tests the hypothesis that the enzyme peptidyl arginine deiminase-4 (PAD4) drives NET formation and liver fibrosis in experimental chronic liver injury.

View Article and Find Full Text PDF

Introduction: Age-related macular degeneration (AMD) is a leading cause of vision loss in older adults, with limited effective treatments available. This study aimed to investigate the pharmacological effects of dihydromyricetin (DHM) on AMD and to identify its putative pharmacological targets through network analysis and molecular docking approaches.

Methods: experiments established an AMD model using sodium iodate (SI)-induced ARPE-19 cells, with CCK-8 assays determining 15 mM SI as the optimal modeling concentration and 100 μM DHM as the optimal treatment concentration.

View Article and Find Full Text PDF