Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organic-inorganic hybrid perovskites have demonstrated great potential for flexible optoelectronic devices due to their superior optoelectronic properties and structural flexibility. However, mechanical deformation-induced cracks at the buried interface and delamination from the substrate severely constrain the optoelectronic performance and device lifespan. Here, we design a two-site bonding strategy aiming to reinforce the mechanical stability of the SnO/perovskite interface and perovskite layer using a multifunctional organic salt, 4-(trifluoromethoxy)phenylhydrazine hydrochloride (TPH). This approach significantly enhances the bonding at the buried interface between the electron transport layer and perovskite layer, which is demonstrated by TPH-modified SnO/perovskite interface remaining intact after 10,000 bending cycles. Meanwhile, TPH mitigates void formation, enhances perovskite crystallinity at the buried interface, and inhibits ion migration inside the devices. Furthermore, incorporating TPH in perovskite bulk decreases the nucleation activation energy and accelerates nucleation, leading to high-quality perovskite film. Consequently, power conversion efficiencies (PCEs) of 21.64 % and 23.61 % are achieved for target flexible and rigid perovskite solar cells, respectively. The target flexible device retained 92.3 % of its initial PCE after 25,000 bending cycles. This approach provides a robust solution for enhancing the mechanical durability of flexible perovskite optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202424483DOI Listing

Publication Analysis

Top Keywords

optoelectronic devices
12
buried interface
12
perovskite
8
flexible optoelectronic
8
sno/perovskite interface
8
perovskite layer
8
bending cycles
8
target flexible
8
interface
6
flexible
5

Similar Publications

Formation of surfaces oxide vacancies in porous ZnCoO nanoflowers for enhanced energy storage performance.

Discov Nano

September 2025

Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China.

A cost-effective and large-scale method for synthesizing ZnCoO nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCoO nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCoO are examined using density functional theory, revealing that treatment with NaBH reduces the band gap of ZnCoO while increasing the DOS near the Fermi level compared to pristine ZnCoO.

View Article and Find Full Text PDF

UVA/B-Selective Skin-Inspired Nociceptors Based on Green Double Perovskite QDs-Sensitized 2D Semiconductor toward Reliable Human Somatosensory System Simulation.

J Phys Chem Lett

September 2025

Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Achieving UVA/B-selective, skin-inspired nociceptors with perception and blockade functions at the single-unit device level remains challenging. This is because the device necessitates distinct components for every performance metric, thereby leading to complex preparation processes and restricted performance, as well as the absence of deep UV (UVB and below)-selective semiconductors. Here, to address this, we develop a structure-simplification skin-inspired nociceptor using a reverse type-II CuAgSbI/MoS heterostructure.

View Article and Find Full Text PDF

AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.

View Article and Find Full Text PDF

[HgX] Linear Group Enabled Ultraviolet Birefringent Crystal RbHgBr with Strong Optical Anisotropy and Wide Bandgap.

Adv Sci (Weinh)

September 2025

Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Ur

Birefringent crystals are pivotal for modern optical modulation technologies, yet developing high-performance birefringent materials with large birefringence (Δn), wide bandgaps, and scalable synthesis remains a significant challenge. Different from the traditional planar [MQ] and distorted [MQ] (n ≥ 4) polyhedral units, a "linear-group" design strategy is proposed, targeting heavy-metal halides with [HgX] (X = halides) coordination modes to exploit their inherent polarizability anisotropy. Through systematic experimental investigations in the ternary A-Hg-X (A = Rb, Cs; X = Br, I) system, six novel Hg-based halides were synthesized.

View Article and Find Full Text PDF

Vertically Stacked Boron Nitride/Graphene Heterostructure for Tunable Antiresonant Hollow-Core Fiber.

J Am Chem Soc

September 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.

View Article and Find Full Text PDF