Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We performed all-atom and coarse-grained simulations of lipid bilayer mixtures of the unsaturated lipid DOPC, with saturated lipids having the same 18-carbon acyl tails and different headgroups, to understand their mechanical properties. The secondary lipids were DSPG, DSPA, DSPS, DSPC, and DSPE. The DOPC:DSPG system with 65:35 molar ratio was the softest, with area compressibility modulus ∼ 22% smaller than the pure DOPC value. Raising the mole % of DOPC leads to increases in , yet at any given composition the trend is DSPG < DSPA < DSPS < DSPC < DSPE. Lipid-lipid interactions are weaker in DOPC:DSPG mixtures and stronger in DSPE systems. The head and phosphate groups of the secondary lipids DSPG, DSPA, and DSPS interact strongly with salt ions. Adding secondary lipids leads to DOPC having more ordered acyl tails relative to pure DOPC systems. No evidence of phase separation or inhomogeneities was observed in our simulations. We synthesized three liposomal formulations, L-DOPC (pure DOPC) and L-DOPC/DSPG and L-DOPC/DSPA, both with 15 mol % of secondary lipid. L-DOPC/DSPA had approximately 3- and 2-times higher in vitro internalization by normal epithelial (EpH4-Ev) and metastatic breast cancer (4T1) cells, compared with L-DOPC. The uptake of L-DOPC/DSPG by EpH4-Ev cells was almost 2-fold compared to L-DOPC, but both liposomes had similar uptakes by cancer cells. As L-DOPC/DSPG and L-DOPC/DSPA have similar values, we presumed that the mechanical properties, possibly in combination with the higher negative surface charges in L-DOPC/DSPA and differences in effective liposome diameters and diffusivities, contributed to these observations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803717PMC
http://dx.doi.org/10.1021/acs.langmuir.4c04363DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
secondary lipids
12
dspg dspa
12
dspa dsps
12
pure dopc
12
acyl tails
8
lipids dspg
8
dsps dspc
8
dspc dspe
8
l-dopc/dspg l-dopc/dspa
8

Similar Publications

The mechanical properties of the polymeric substrate or matrix where a cell grows affect cell behavior. Most studies have focused on relating elastic properties of polymeric substrates, which are time-independent, to cell behaviors. However, polymeric substrates and biological systems exhibit a time-dependent, often viscoelastic, mechanical response.

View Article and Find Full Text PDF

Globular proteins as functional-mechanical materials: a multiscale perspective on design, processing, and applications.

Mater Horiz

September 2025

MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.

Globular proteins, traditionally regarded as non-structural biomolecules due to the limited load-bearing capacity in their monomeric states, are increasingly recognized as valuable building blocks for functional-mechanical materials. Their inherent bioactivity, chemical versatility, and structural tunability enable the design of materials that combine biological functionality with tailored mechanical performance. This review highlights recent advances in engineering globular proteins-spanning natural systems (serum albumins, enzymes, milk globulins, silk sericin, and soy protein isolates) to recombinant architectures including tandem-repeat proteins-into functional-mechanical platforms.

View Article and Find Full Text PDF

Strain-induced half-metallicity and giant Wiedemann-Franz violation in monolayer NiI.

Phys Chem Chem Phys

September 2025

Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110V, Valparaíso, Chile.

Reversible control of spin-dependent thermoelectricity mechanical strain provides a platform for next-generation energy harvesting and thermal logic circuits. Using first-principles and Boltzmann transport calculations, we demonstrate that monolayer NiI undergoes a strain-driven semiconductor-to-half-metal transition, enabled by the selective closure of its spin-down band gap while preserving a robust ferromagnetic ground state. Remarkably, this transition is accompanied by a giant, non-monotonic violation of the Wiedemann-Franz law, with the Lorenz number enhanced up to 7.

View Article and Find Full Text PDF

The development of mechanically robust, biocompatible, and biodegradable hydrogels remains a significant challenge for biomedical applications involving load-bearing soft tissues. Herein, a tubular lignin-derived hydrogel is engineered to assess its physicochemical, mechanical, and biological properties. Kraft and organosolv lignin are systematically compared at varying crosslinker concentrations to determine their effect on pore morphology, swelling behavior, and mechanical performance.

View Article and Find Full Text PDF

This study presents a comprehensive first-principles and device-performance investigation of alkali metal-based anti-perovskites ZBrO (Z = K, Rb, Cs, and Fr) for advanced optoelectronic and photovoltaic applications. Using density functional theory (DFT) with GGA-PBE and mGGA-rSCAN functionals, we analyzed the structural, electronic, optical, mechanical, phonon, population, and thermoelectric properties of these compounds. All ZBrO materials exhibit direct band gaps and strong optical absorption in the visible-UV spectrum.

View Article and Find Full Text PDF