98%
921
2 minutes
20
The present work reports a clear and improved hydrothermal methodology for the synthesis of MoSe nanoflowers (MNFs) at 210 °C. To observe the effect of temperature on the fascinating properties, the process temperature was modified by ±10 °C. The as-prepared MNFs were found to consist of 2D nanosheets, which assembled into a 3D flower-like hierarchical morphology van der Waals forces. The elemental composition and mapping of the MNFs reveal that the constituents are uniformly distributed throughout the material. Crystallographic and structural analyses confirmed that the as-synthesized MNFs were of a highly crystalline nature with a two-layer hexagonal (2H) phase of MoSe (2H-MoSe). Additionally, the microstructure and lattice-scale features of the MNFs studied using HRTEM disclosed ultrathin nanosheets of thickness ∼3 nm, which were a few atomic layers thick. A plausible formation and growth mechanism of the as-prepared MNFs is also proposed. For the purpose of developing supercapacitors, the electrochemical energy storage characteristics of the synthesized MNFs were examined. Maximum specific capacitance of 284.8 F g at 5 mV s scan rate was demonstrated by the three-electrode setup, and the capacitance retention was about 88%, even after 10 000 cycles. As an electrode material for supercapacitors, MNFs have great potential due to their high specific capacitance and exceptional cycling stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt02993c | DOI Listing |
J Hazard Mater
September 2025
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China. Electronic address:
Molybdenum diselenide (MoSe) is promising for capturing heavy metal ions, due to its sandwich-like Se-Mo-Se layers. However, limited by the narrow interlayer spacing, the majority of Se atoms in MoSe are not effectively available to the hydrated metal ions. Herein, ethylenediamine (EDA) intercalated MoSe has been prepared not only to expose more binding sites than that of bulk MoSe, but also to overcome the limitations associated with the self-aggregation and inferior stability of 2D single layer.
View Article and Find Full Text PDFDalton Trans
February 2025
Department of Physics, RPS Degree College, Balana, Mahendergarh, Haryana 123029, India.
The present work reports a clear and improved hydrothermal methodology for the synthesis of MoSe nanoflowers (MNFs) at 210 °C. To observe the effect of temperature on the fascinating properties, the process temperature was modified by ±10 °C. The as-prepared MNFs were found to consist of 2D nanosheets, which assembled into a 3D flower-like hierarchical morphology van der Waals forces.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
College of Resources and Environment, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China. Electronic address:
Recently, antibiotic wastewater pollution has become increasingly serious. In this study, a novel hollow cubic framework self-supported nanoflower-like cathode catalyst (MoSe/CNC) based on Co Fe prussian blue analogues (CoFePBA)-derived cubic nanocage (CNC) loaded with MoSe was successfully prepared and utilized in an electro-activated peroxymonosulfate (PMS) system for norfloxacin (NOR) degradation. Benefit from the combined structures of MoSe, MoC, and Co/FeNC, the electrocatalytic activity and specific surface area were greatly improved.
View Article and Find Full Text PDFLangmuir
October 2024
School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
Metal-organic frameworks (MOFs) are crystalline porous materials for storage and energy conversion applications with three-dimensional pore structure, high porosity, and specific surface area, which are widely utilized in electrocatalysis. Herein, MoSe/NiSe composites were synthesized by selenization reaction using NiMOF as the precursor. The composites were hollow nanoflower structures with a synergistic effect between MoSe and NiSe to promote rapid electron transfer, which exhibited good hydrogen evolution reaction performance in an alkaline medium.
View Article and Find Full Text PDFSmall
November 2024
State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China.
Photodynamic therapy (PDT) is long-standing suffered from elevated tumor interstitial fluid pressure (TIFP) and prevalent hypoxic microenvironment within the solid malignancies. Herein, sound-activated flexocatalysis is developed to overcome the dilemma of PDT through both enhancing tumor penetration of photosensitizers by reducing TIFP and establishing an oxygen-rich microenvironment. In detail, a Schottky junction is constructed by flexocatalyst MoSe nanoflowers and Pt.
View Article and Find Full Text PDF