Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glufosinate-ammonium (GLA) is a common agricultural herbicide used worldwide. It can be transported into water bodies and can persist for long periods, posing a risk to non-target aquatic organisms. In this study, adult zebrafish were exposed to GLA (0, 0.6, 6, and 60 mg/L) for 21 days to evaluate its effect on reproduction. Fecundity, offspring development, sex hormone levels, histological changes, and apoptosis in the gonads were measured, and the expression levels of genes related to the hypothalamic-pituitary-gonadal-liver (HPG-L) axis, the cell cycle, and apoptosis were examined to assess the toxic mechanisms of GLA. Higher GLA concentrations were measured in the ovaries than in the testes. Decreases in spawning count, sperm density, and motility were observed. Meanwhile, the offspring survival rate decreased, and larval offspring swimming behavior was inhibited. GLA exposure significantly increased estradiol levels in females and reduced testosterone levels in males by affecting the expression of HPG-L axis genes. Furthermore, GLA exposure induced apoptosis in gonadal cells by controlling the expression of genes involved in cell cycle regulation and apoptotic pathways. Notably, the smaller effects of GLA concentration on body weight, gonad somatic index value, gonadal cell composition, and gonadal cell apoptosis were observed in male fish than in female fish. Taken together, GLA can accumulate in the gonads and cause sex-specific alterations in the expression of genes involved in the HPG-L axis and subsequent steroidogenesis and gametogenesis, which may be responsible for GLA-induced reproductive and developmental toxicities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.178489DOI Listing

Publication Analysis

Top Keywords

hpg-l axis
12
gla
8
cell cycle
8
gla exposure
8
expression genes
8
genes involved
8
gonadal cell
8
sex-specific reproductive
4
reproductive toxicity
4
toxicity subacute
4

Similar Publications

Typical Thermochromic Dye Crystal Violet Lactone Acts as an Endocrine Disruptor: Nontargeted Screening, Prioritization, and Experimental Verification.

Environ Sci Technol

July 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Identification and characterization of endocrine disruptors and their associated ecological and health risks are critical areas of environmental toxicology. In this study, we aimed to identify previously unrecognized endocrine disruptors in thermal paper by employing a nontargeted screening coupled ToxPi Ranking (NSTR) approach. Among the substances identified with high confidence in thermal paper, Crystal Violet Lactone (CVL), a typical thermochromic dye, was prioritized with a high endocrine disruptive potential.

View Article and Find Full Text PDF

Glufosinate-ammonium (GLA) is a common agricultural herbicide used worldwide. It can be transported into water bodies and can persist for long periods, posing a risk to non-target aquatic organisms. In this study, adult zebrafish were exposed to GLA (0, 0.

View Article and Find Full Text PDF

The present study investigated the reproductive and developmental effects of sex-specific chronic exposure to dietary arsenic in zebrafish. Adult zebrafish () were exposed to environmentally realistic doses of arsenic via diet [0 (control; no added arsenic), 30 (low), 60 (medium), and 100 (high) μg/g dry weight, as arsenite] for 90 days. Following exposure, arsenic-exposed females from each dietary treatment were mated with control males, and similarly, arsenic-exposed males from each dietary treatment were mated with control females.

View Article and Find Full Text PDF

Endocrine-disrupting compounds (EDCs) can impact the reproductive system by interfering with the hypothalamic-pituitary-gonadal (HPG) axis. Although in vitro testing methods have been developed to screen chemicals for endocrine disruption, extrapolation of in vitro responses to in vivo action shows inconsistent accuracy. The authors describe a tissue coculture of the fathead minnow (Pimephales promelas) HPG axis and liver (HPG-L) as a tissue explant model that mimics in vivo results.

View Article and Find Full Text PDF

Determining ecotoxicological risks of exposure to mixtures of endocrine disrupting chemicals (EDCs) remains a daunting challenge in environmental toxicology. Recently, some studies have illustrated that transcriptional profiling of genes offers the potential to identify the chemical causation of effects that are induced by exposure to complex mixtures. In the present study, the transcriptional responses of a set of genes involved in the hypothalamic-pituitary-gonadal (HPG, or HPG[L]-liver) axis of Japanese medaka (Oryzias latipes) were systematically examined after treatment with a combination of an estrogen (17α-ethinylestradiol [EE2], 20 ng/L) and two model anti-estrogens, the aromatase inhibitor (AI) letrozole (LET) and the selective estrogen-receptor modulator (SERM) tamoxifen (TAM), at three concentrations (30, 100 and 300 μg/L) for 72 h.

View Article and Find Full Text PDF