Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thymidine kinase 1 (TK1), a crucial enzyme in DNA synthesis, is highly expressed in various cancers. However, the mechanisms underlying its elevated expression and the implications for tumor metabolism remain unclear. Here we demonstrate that activation of growth factor receptors enhances TK1 expression. Treatment with epidermal growth factor or insulin-like growth factor 1 induces the binding of ERK1/2 to TK1 and subsequent TK1 S13/231 phosphorylation by ERK1/2. This modification recruits ubiquitin carboxyl-terminal hydrolase 9X to deubiquitylate TK1, preventing its proteasomal degradation. Stabilized TK1 not only enhances its enzyme activity-dependent deoxythymidine monophosphate production for DNA synthesis but also promotes glycolysis independently of its enzymatic activity by upregulating phosphofructokinase/fructose bisphosphatase type 3 expression. This dual role of TK1 drives the proliferation of human hepatocellular carcinoma cells and liver tumor growth in mice. Our findings reveal a crucial mechanism by which growth factors promote tumor development through TK1-mediated DNA synthesis and glycolysis and highlight TK1 as a potential molecular target for cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-024-01473-6DOI Listing

Publication Analysis

Top Keywords

dna synthesis
12
growth factor
12
thymidine kinase
8
enzyme activity-dependent
8
tumor growth
8
tk1
8
growth
6
erk-usp9x-coupled regulation
4
regulation thymidine
4
kinase promotes
4

Similar Publications

The synthesis of -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [HT(3,4,5-OCH)PP] and cobalt(II) -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [Co(T(3,4,5-OCH)PP)] has been successfully accomplished. The oxidation properties of [Co(T(3,4,5-OCH)PP)] have been assessed through UV-vis, NMR, and EPR techniques. It can be seen in the UV-vis spectrum that adding SbCl caused extra peaks to appear at 674 nm, which means that a π-cation radical was formed.

View Article and Find Full Text PDF

From Biological Mechanisms to Clinical Applications: A Review of Photobiomodulation in Dental Practice.

Photobiomodul Photomed Laser Surg

September 2025

Department of Oral and Maxillofacial Diagnostic Sciences, Dental College and Hospital, Taibah University, Medina, Saudi Arabia.

Photobiomodulation (PBM) therapy involves the use of low-dose, nonionizing light to reduce pain and inflammation, promote wound healing, and enhance tissue regeneration. PBM-based therapy of various dental conditions is associated with improved treatment outcomes. This study aims to critically review the literature to highlight the underlying molecular biological mechanisms and clinical applications of PBM in modern dental practice.

View Article and Find Full Text PDF

On-DNA Binder Confirmation: Increasing Confidence in DEL Hits.

J Med Chem

September 2025

Encoded Technologies, Molecular Modalities Discovery, GSK, Cambridge, Massachusetts 02140, United States.

DNA-encoded libraries (DELs) are used throughout small-molecule drug discovery to identify new lead compounds for protein targets. DEL hits are traditionally evaluated via off-DNA resynthesis and subsequent biological testing. This approach can be time- and resource-intensive, limiting the number of putative hits selected for follow-up.

View Article and Find Full Text PDF

Replication of cellular chromosomes requires a primase to generate short RNA primers to initiate genomic replication. While bacterial and archaeal primase generate short RNA primers, the eukaryotic primase, Polα-primase, contains both RNA primase and DNA polymerase (Pol) subunits that function together to form a >20 base hybrid RNA-DNA primer. Interestingly, the DNA Pol1 subunit of Polα lacks a 3'-5' proofreading exonuclease, contrary to the high-fidelity normally associated with DNA replication.

View Article and Find Full Text PDF

Microscopic examination of biopsy tissues remains essential for cancer diagnosis, despite advancements in sequencing technologies. Alterations in nuclear size or the nuclear-to-cytoplasmic ratio are hallmark features of cancer cells and often correlate with disease progression. However, the mechanisms underlying nuclear size abnormalities and their impact on tumor progression remain unclear.

View Article and Find Full Text PDF