98%
921
2 minutes
20
As human-machine interface hardware advances, better sensors are required to detect signals from different stimuli. Among numerous technologies, humidity sensors are critical for applications across different sectors, including environmental monitoring, food production, agriculture, and healthcare. Current humidity sensors rely on materials that absorb moisture, which can take some time to equilibrate with the surrounding environment, thus slowing their temporal response and limiting their applications. Here, this challenge is tackled by combining a nanogap electrode (NGE) architecture with chicked egg-derived albumen as the moisture-absorbing component. The sensors offer inexpensive manufacturing, high responsivity, ultra-fast response, and selectivity to humidity within a relative humidity range of 10-70% RH. Specifically, the egg albumen-based sensor showed negligible response to relevant interfering species and remained specific to water moisture with a room-temperature responsivity of 1.15 × 10. The nm-short interelectrode distance (circa 20 nm) of the NGE architecture enables fast temporal response, with rise/fall times of 10/28 ms, respectively, making the devices the fastest humidity sensors reported to date based on a biomaterial. By leveraging these features, non-contact moisture sensing and real-time respiratory cycle monitoring suitable for diagnosing chronic diseases such as sleep apnea, asthma, and pulmonary disease are demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854870 | PMC |
http://dx.doi.org/10.1002/adma.202414005 | DOI Listing |
Biosens Bioelectron
September 2025
School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China. Electronic address:
The practical implementation of wearable sensing devices for human health monitoring requires significant advancements in lightweight design and multifunctional integration. Fiber-shaped sensors have attracted considerable research attention due to their ability to maintain exceptional sensitivity and measurement accuracy under various mechanical deformations, including bending, stretching, and torsion. Nevertheless, the functional integration remains constrained, particularly as evidenced by sensitivity degradation and device failure under extreme high-temperature conditions, which severely hinders their practical applicability for real-time health monitoring applications in complex environmental scenarios.
View Article and Find Full Text PDFACS Sens
September 2025
School of Physics and Electric Engineering, Linyi University, Linyi 276000, China.
In this study, employing a 2D electrodeposition in situ assembly method, a high-performance HS sensor based on a p-n type CuO-CuFeO heterostructure ordered nanowire arrays was successfully fabricated on silicon substrates. Compared to CuO, CuO-CuFeO nanowire arrays exhibits an ideal interfacial barrier structure and higher initial resistance, with a response to 10 ppm of HS at room temperature (20 ± 3 °C) increased by 225 times and a response time reduced by over 2400 s. The sensor demonstrates exceptional sensitivity (LOD = 10 ppb; response = 234.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing
Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Graduate School of Medicine, Nagoya University, Nagoya, Japan.
Electroactive polymer (EAP) artificial muscles are gaining attention in robotic control technologies. Among them, the development of self-sensing actuators that integrate sensing mechanisms within artificial muscles is highly anticipated. This study aimed to evaluate the accuracy and precision of the sensing capabilities of the e-Rubber (eR), an artificial muscle developed by Toyoda Gosei Co.
View Article and Find Full Text PDF