Photonic memristors based on two-dimensional materials are emerging as critical components for ultrascalable, energy-efficient artificial vision systems, integrating opto-sensing, data storage and processing capabilities. However, existing devices typically exhibit narrow spectral response ranges and operate in a single mode (for example, non-volatility), limiting their applications in complex computing scenarios. Here we introduce photonic memristor arrays based on a wafer-scale hexagonal boron nitride (hBN)/silicon (Si) heterostructure.
View Article and Find Full Text PDFSolution-based methods have emerged as a promising approach for large-scale and low-cost electronics fabrication. However, solution processing has rarely realized high-performance p-type transistors, impeding the advancement of solution-processed electronics. Among the various solution-processable material families, van der Waals (vdW) systems stand out due to several attractive features, one of which is the atomically defined interfaces that facilitate carrier charge transport, enabling enhanced device performance.
View Article and Find Full Text PDFModern telecommunication technologies, such as the 5G and upcoming 6G networks, rely on devices operating in the radio frequency (RF) spectrum of 0.3-90 GHz and 7-300 GHz, respectively. To meet these demanding frequency requirements, new manufacturing methods and device architectures are gaining increasing attention.
View Article and Find Full Text PDFWe report three novel donor-acceptor (D-A) copolymers sharing a common fused donor unit (CDTT) but differing in the functionalization of the benzothiadiazole (BT) acceptor unit. Acceptors bearing two cyano groups (DCNBT) are compared to novel acceptors bearing one cyano and one fluorine group (FCNBT) or one nitro and one fluoro group (NOFBT). The choice of the acceptor has a significant effect on the optoelectronic properties of the resulting polymers.
View Article and Find Full Text PDFA deep understanding of how solution-processed solar cells (SSCs) perform under varying temperatures and irradiance is crucial for their optimal design, synthesis, and use. However, current partial spectral characterization, primarily below the band gap wavelengths ( < ), limits insights into their full operation. In this work, we expand the current knowledge by providing comprehensive full-spectrum experimental optical characterizations (∼300-2500 nm) and theoretical optical-thermal-electrical analysis for the most common high-efficiency single-junction and tandem organic SSCs (OSCs) and perovskite SSCs (PSCs), including p-i-n OSC, n-i-p OSC, p-i-n PSC, n-i-p mesoscopic PSC, OSC/PSC, and PSC/PSC.
View Article and Find Full Text PDFWe report a series of n-type conjugated polymers based on PNDI-TfBTT and PNDIV-TfBTT backbones constructed from electron-deficient naphthalene diimide (NDI) and fluorinated benzothiadiazole (fBT) units, with PNDIV-TfBTT incorporating a vinylene spacer. Quantitative postpolymerization modification (PPM) via nucleophilic substitution replaced the fBT fluorine with thioether side chains, optionally containing azide groups. Thioether substitution improved solubility, while subtly changing the ordering of polymer films.
View Article and Find Full Text PDFThe controlled growth of two-dimensional (2D) perovskite atop three-dimensional (3D) perovskite films reduces interfacial recombination and impedes ion migration, thus improving the performance and stability of perovskite solar cells (PSCs). Unfortunately, the random orientation of the spontaneously formed 2D phase atop the pre-deposited 3D perovskite film can deteriorate charge extraction owing to energetic disorder, limiting the maximum attainable efficiency and long-term stability of the PSCs. Here, we introduce a meta-amidinopyridine ligand and the solvent post-dripping step to generate a highly ordered 2D perovskite phase on the surface of a 3D perovskite film.
View Article and Find Full Text PDFMost current highly efficient organic solar cells utilize small molecules like Y6 and its derivatives as electron acceptors in the photoactive layer. In this work, a small molecule acceptor, SC8-IT4F, is developed through outer side chain engineering on the terminal thiophene of a conjugated 6,12-dihydro-dithienoindeno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IDTT) central core. Compared to the reference molecule C8-IT4F, which lacks outer side chains, SC8-IT4F displays notable differences in molecule geometry (as shown by simulations), thermal behavior, single-crystal packing, and film morphology.
View Article and Find Full Text PDFAs human-machine interface hardware advances, better sensors are required to detect signals from different stimuli. Among numerous technologies, humidity sensors are critical for applications across different sectors, including environmental monitoring, food production, agriculture, and healthcare. Current humidity sensors rely on materials that absorb moisture, which can take some time to equilibrate with the surrounding environment, thus slowing their temporal response and limiting their applications.
View Article and Find Full Text PDFThe significant contact resistance at the metal-semiconductor interface is a well-documented issue for organic thin-film transistors (OTFTs) that hinders device and circuit performance. Here, this issue is tackled by developing three new thiol carbazole-based self-assembled monolayer (SAM) molecules, namely tBu-2SCz, 2SCz, and Br-2SCz, and utilizing them as carrier-selective injection interlayers. The SAMs alter the work function of gold electrodes by more than 1 eV, making them suitable for use in hole and electron-transporting OTFTs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
We present a series of newly developed donor-acceptor (D-A) polymers designed specifically for organic electrochemical transistors (OECTs) synthesized by a straightforward route. All polymers exhibited accumulation mode behavior in OECT devices, and tuning of the donor comonomer resulted in a three-order-of-magnitude increase in transconductance. The best polymer gFBT-g2T, exhibited normalized peak transconductance (g) of 298±10.
View Article and Find Full Text PDFWafer-scale transfer processes of 2D materials significantly expand their application space in scalable microelectronic devices with excellent and tunable properties through van der Waals (vdW) stacking. Unlike many 2D materials, wafer-scale transfer of MXene films for vdW contact engineering has not yet been reported. With their rich surface chemistry and tunable properties, the transfer of MXenes can enable enormous possibilities in electronic devices using interface engineering.
View Article and Find Full Text PDFAdv Mater
October 2024
Solution-processable poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is an important polymeric conductor used extensively in organic flexible, wearable, and stretchable optoelectronics. However, further enhancing its conductivity and long-term stability while maintaining its superb mechanical properties remains challenging. Here, a novel post-treatment approach to enhance the electrical properties and stability of sub-20-nm-thin PEDOT:PSS films processed from solution is introduced.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Improving hole injection through the surface modification of indium tin oxide (ITO) with self-assembled monolayers (SAMs) is a promising method for modulating the carrier injection in organic light-emitting diodes (OLEDs). However, developing SAMs with the required characteristics remains a daunting challenge. Herein, we functionalize ITO with various phosphonic acid SAMs and evaluate the SAM-modified anodes in terms of their work function (WF), molecular distribution, coverage, and electrical conductivity.
View Article and Find Full Text PDFMolecular doping is commonly utilized to tune the charge transport properties of organic semiconductors. However, applying this technique to electrically dope inorganic materials like metal oxide semiconductors is challenging due to the limited availability of molecules with suitable energy levels and processing characteristics. Herein, n-type doping of zinc oxide (ZnO) films is demonstrated using 1,3-dimethylimidazolium-2-carboxylate (CO-DMI), a thermally activated organic n-type dopant.
View Article and Find Full Text PDFTracking the dynamics of ultrafast hole injection into copper thiocyanate (CuSCN) at the interface can be experimentally challenging. These challenges include restrictions in accessing the ultraviolet spectral range through transient electronic spectroscopy, where the absorption spectrum of CuSCN is located. Time-resolved vibrational spectroscopy solves this problem by tracking marker modes at specific frequencies and allowing direct access to dynamical information at the molecular level at donor-acceptor interfaces in real time.
View Article and Find Full Text PDFMetabolites are essential molecules involved in various metabolic processes, and their deficiencies and excessive concentrations can trigger significant physiological consequences. The detection of multiple metabolites within a non-invasively collected biofluid could facilitate early prognosis and diagnosis of severe diseases. Here, a metal oxide heterojunction transistor (HJ-TFT) sensor is developed for the label-free, rapid detection of uric acid (UA) and 25(OH)Vitamin-D3 (Vit-D3) in human saliva.
View Article and Find Full Text PDFThermally evaporated C is a near-ubiquitous electron transport layer in state-of-the-art p-i-n perovskite-based solar cells. As perovskite photovoltaic technologies are moving toward industrialization, batch-to-batch reproducibility of device performances becomes crucial. Here, we show that commercial as-received (99.
View Article and Find Full Text PDFMacromolecules
August 2023
Bisthienoazepinedione (BTA) has been reported for constructing high-performing p-type conjugated polymers in organic electronics, but the ring extended version of BTA is not well explored. In this work, we report a new synthesis of a key building block to the ring expanded electron-deficient pentacyclic azepinedione (BTTA). Three copolymers of BTAA with benzodithiophene substituted by different side chains are prepared.
View Article and Find Full Text PDFCyclophosphazenes offer a robust and easily modifiable platform for a diverse range of functional systems that have found applications in a wide variety of areas. Herein, for the first time, it reports an organophosphazene-based supramolecular ferroelectric [(PhCH NH) P N Me]I, [PMe]I. The compound crystallizes in the polar space group Pc and its thin-film sample exhibits remnant polarization of 5 µC cm .
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2023
The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones.
View Article and Find Full Text PDFBiosens Bioelectron
October 2023
Transistor-based biosensors represent an emerging technology for inexpensive point-of-care testing (POCT) applications. However, the limited sensitivity of the current transistor technologies hinders their practical deployment. In this study, we developed tri-channel InO/ZnO heterojunction thin-film transistors (TFTs) featuring the surface-immobilized enzyme glucose oxidase to detect glucose in various biofluids.
View Article and Find Full Text PDFGrowing continuous monolayer films of transition-metal dichalcogenides (TMDs) without the disruption of grain boundaries is essential to realize the full potential of these materials for future electronics and optoelectronics, but it remains a formidable challenge. It is generally believed that controlling the TMDs orientations on epitaxial substrates stems from matching the atomic registry, symmetry, and penetrable van der Waals forces. Interfacial reconstruction within the exceedingly narrow substrate-epilayer gap has been anticipated.
View Article and Find Full Text PDF