Publications by authors named "Alberto D Scaccabarozzi"

Copper(II) phthalocyanine (CuPc), also known as Pigment Blue 15, is a widely utilized pigment renowned for its exceptional semiconducting properties when refined to electronic-grade purity. Recent studies have confirmed its safety if ingested at doses required for essential active components in edible electronics for advanced gastrointestinal tract monitoring. Since in-body operations impose stringent safety constraints on operational biases, the development of transistors with high transconductance at low voltages is required to ensure adequate amplification gain.

View Article and Find Full Text PDF

Solution-processable poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is an important polymeric conductor used extensively in organic flexible, wearable, and stretchable optoelectronics. However, further enhancing its conductivity and long-term stability while maintaining its superb mechanical properties remains challenging. Here, a novel post-treatment approach to enhance the electrical properties and stability of sub-20-nm-thin PEDOT:PSS films processed from solution is introduced.

View Article and Find Full Text PDF

The integration of organic electronic circuits into real-life applications compels the fulfillment of a range of requirements, among which the ideal operation at a low voltage with reduced power consumption is paramount. Moreover, these performance factors should be achieved via solution-based fabrication schemes in order to comply with the promise of cost- and energy-efficient manufacturing offered by an organic, printed electronic technology. Here, we propose a solution-based route for the fabrication of low-voltage organic transistors, encompassing ideal device operation at voltages below 5 V and exhibiting n-type unipolarization.

View Article and Find Full Text PDF
Article Synopsis
  • * A new near-infrared polymer was developed, showcasing absorption capabilities up to 1500 nanometers and achieving impressive detectivity and low dark current at -2 volts.
  • * This advancement shows significant improvements in OPD performance due to better material properties, making it suitable for real-time biosensing applications, such as monitoring heart rate and blood oxygen levels with a pulse oximeter.
View Article and Find Full Text PDF

Engineering the molecular structure of conjugated polymers is key to advancing the field of organic electronics. In this work, we synthesized a molecularly encapsulated version of the naphthalene diimide bithiophene copolymer PNDIT2, which is among the most popular high charge mobility organic semiconductors in n-type field-effect transistors and non-fullerene acceptors in organic photovoltaic blends. The encapsulating macrocycles shield the bithiophene units while leaving the naphthalene diimide units available for intermolecular interactions.

View Article and Find Full Text PDF

Recent efforts in the field of organic photodetectors (OPD) have been focused on extending broadband detection into the near-infrared (NIR) region. Here, two blends of an ultralow bandgap push-pull polymer TQ-T combined with state-of-the-art non-fullerene acceptors, IEICO-4F and Y6, are compared to obtain OPDs for sensing in the NIR beyond 1100 nm, which is the cut off for benchmark Si photodiodes. It is observed that the TQ-T:IEICO-4F device has a superior IR responsivity (0.

View Article and Find Full Text PDF

Solution-processed, large-area, and flexible electronics largely relies on the excellent electronic properties of sp -hybridized carbon molecules, either in the form of π-conjugated small molecules and polymers or graphene and carbon nanotubes. Carbon with sp-hybridization, the foundation of the elusive allotrope carbyne, offers vast opportunities for functionalized molecules in the form of linear carbon atomic wires (CAWs), with intriguing and even superior predicted electronic properties. While CAWs represent a vibrant field of research, to date, they have only been applied sparingly to molecular devices.

View Article and Find Full Text PDF

The low carrier mobility of organic semiconductors and the high parasitic resistance and capacitance often encountered in conventional organic Schottky diodes hinder their deployment in emerging radio frequency (RF) electronics. Here, these limitations are overcome by combining self-aligned asymmetric nanogap electrodes (≈25 nm) produced by adhesion lithography, with a high mobility organic semiconductor, and RF Schottky diodes able to operate in the 5G frequency spectrum are demonstrated. C IDT-BT is used, as the high hole mobility polymer, and the impact of p-doping on the diode performance is studied.

View Article and Find Full Text PDF
Article Synopsis
  • There is a rising need for organic materials with high electron mobility, as current values are lower than those for hole mobility.
  • A nonfullerene acceptor, BTP-4F (Y6), has been demonstrated to achieve an electron mobility of 2.4 cm V s in solution-processed organic thin-film transistors, comparable to leading n-type OTFTs.
  • The efficiency in charge transport is attributed to its highly ordered crystalline phase, suggesting new directions for high mobility organic materials and guiding future material design efforts.
View Article and Find Full Text PDF

Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous.

View Article and Find Full Text PDF
Article Synopsis
  • Organic mixed conductors are crucial for applications in batteries, bioelectronics, neuromorphic computing, and sensing; however, they often face issues of significant volumetric changes during ion exchange, which can harm device performance and lifespan.
  • Researchers introduce a new polymer, poly[3-(6-hydroxy)hexylthiophene] (P3HHT), which demonstrates the ability to transport ions and electrons while exhibiting minimal swelling (only +2.5%), compared to much higher swelling rates in common polymers like poly(3,4-ethylenedioxythiophene):polystyrene sulfonate.
  • This low-swelling characteristic of P3HHT allows it to maintain its original thickness after de-doping, unlike
View Article and Find Full Text PDF

It is well established that for organic photodetectors (OPDs) to compete with their inorganic counterparts, low dark currents at reverse bias must be achieved. Here, two rhodanine-terminated nonfullerene acceptors O-FBR and O-IDTBR are shown to deliver low dark currents at -2 V of 0.17 and 0.

View Article and Find Full Text PDF

Carbyne and linear carbon structures based on sp-hybridization are attractive targets as the ultimate one-dimensional system (i.e., one-atom in diameter) featuring wide tunability of optical and electronic properties.

View Article and Find Full Text PDF

Chemical design criteria for materials for bioelectronics applications using a series of copolymer derivatives based on poly(3-hexylthiophene) are established. Directed chemical design via side-chain functionalization with polar groups allows manipulation of ion transport and ion-to-electron transduction. Insights gained will permit increased use of the plethora of materials employed in the organic electronics area for application in the bioelectronics field.

View Article and Find Full Text PDF