Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Hepatocellular carcinoma (HCC) is a complex and multifaceted disease that is increasingly prevalent globally. The involvement of immune cells in the tumour microenvironment has been linked to the progression of HCC, but the exact cause-and-effect relationship is not yet clear. In this study, we utilise Mendelian randomization (MR) to investigate the potential causal links between immune factors and the development of HCC.

Method: We executed a comprehensive MR study, leveraging publicly accessible genetic datasets to explore the potential causal links between 731 types of immune cells and HCC. Our analysis primarily applied inverse variance weighting and weighted median methods. To evaluate the robustness of our findings and probe for the presence of heterogeneity and pleiotropy, we also conducted thorough sensitivity analyses.

Results: We found 36 immune cells were associated with HCC, CD64 on CD14- CD16+ monocytes (OR = 1.328, 95% CI = 1.116- 1.581, = 0.001), CD3- lymphocyte %lymphocytes (OR = 1.341, 95% CI = 1.027- 1.750, p = 0.031), HLA DR on CD14+ monocytes (OR = 1.256, 95% CI = 1.089- 1.448, = 0.002), CD19 on CD19 on Plasma Blast-Plasma Cell (OR = 1.224, 95% CI = 1.073- 1.396, = 0.003), CCR2 on monocytes (OR = 1.204, 95% CI = 1.073- 1.351, = 0.002) and Naive CD4+ T cell Absolute Count (OR = 0.797, 95% CI = 0.655- 0.969, = 0.023) were the most strongly associated with HCC. Among them, CD64 on CD14- CD16+ monocytes, CD3 - lymphocyte %lymphocytes, HLA DR on CD14+ monocytes and CD19 on Plasma Blast-Plasma Cells are the risk factors, while Naive CD4+ T cell Absolute Count are protective factors for HCC.

Conclusion: Our MR analysis of the role of immune cells and HCC provides a framework for knowledge of circulating immune status. Systematic assays of infiltrating immune cells in HCC can help dissect the immune status of HCC, assess the current use of checkpoint blockers, and most importantly, aid in the development of innovative immunotherapies. Further research is necessary to validate these findings and explore the underlying mechanisms that influence the immune response to HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735144PMC
http://dx.doi.org/10.3332/ecancer.2024.1794DOI Listing

Publication Analysis

Top Keywords

immune cells
24
cells hcc
12
immune
10
hcc
9
hepatocellular carcinoma
8
mendelian randomization
8
potential causal
8
causal links
8
associated hcc
8
hcc cd64
8

Similar Publications

Objective: Aim: To evaluate clinical applicability of immune mediator's interleukin-16, immunoglobulin E along with eosinophil count in diagnosing COVID-19 and determining its severity.

Patients And Methods: Materials and Methods: Cross-sectional case-control study was conducted at Al-Najaf General Hospital, Najaf, Iraq between March and August 2024. 120 participants: 60 confirmed COVID-19 cases and 60 healthy controls which matched cases in terms of age and sex.

View Article and Find Full Text PDF

Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Ion channels in NK cells: signaling and functions.

J Leukoc Biol

September 2025

Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, 28045 Colima, México.

Ion channels are integral membrane proteins which facilitate rapid transport of small ions into and out of the cell and between organelles and cytosol. Cytolytic lymphocytes including natural killer (NK) cells principally kill virus-infected and cancer cells by releasing cytolytic granules within the immunological synapse, formed between target and effector cells. This process strongly depends on Ca2+ signaling, which in human NK cells is controlled by the phospholipase C (PLCγ)/inositol-1,4,5-triphospate receptor (IP3R)/calcium release-activated calcium channel (CRAC) axis.

View Article and Find Full Text PDF

(phosphatidylserine synthase 1) encodes an enzyme that facilitates production of phosphatidylserine (PS), which mediates a global immunosuppressive signal. Here, based on in vivo CRISPR screen, we identified PTDSS1 as a target to improve anti-PD-1 therapy. Depletion of in tumor cells increased expression of interferon-γ (IFN-γ)-regulated genes, including , , , and , even in the absence of IFN-γ stimulation in vitro.

View Article and Find Full Text PDF