Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon dots in biosensing have advanced significantly, adding improvements to different detection techniques. In this study, an amperometric immunosensor for Salmonella Thyphimurium was designed using antibodies labeled with carbon dots (Cdots) from pequi almond (Caryocar brasiliensis). Cdots were synthesized by pyrolysis and characterized by FTIR, UV/fluorescence, electrochemistry, zeta potential, and transmission electron microscopy (TEM). A particle size of 6.80 ± 2.13 nm was estimated, and the zeta potential was - 47.4 mV, indicating the preponderant presence of acidic groups, as confirmed by FTIR. The impedance evaluation of the response of biosensors assembled for live (Rct = 13.4 kΩ) and dead (Rct = 499.7 Ω) Salmonella showed a significant difference in their values, in agreement with chronoamperometric analyses, which had their current values drastically reduced from - 2.2 mA (live) to 0 mA (dead). An analytical curve for Salmonella was established with the limit of detection lower than 1 CFU/mL. This electrochemical biosensor using pequi carbon dots for antibody labeling showed promising results for detecting the pathogen. Thus, carbon dots can be used as substitutes for enzymes in labeling antibodies used in the design and production of sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885730PMC
http://dx.doi.org/10.1007/s42770-025-01612-1DOI Listing

Publication Analysis

Top Keywords

carbon dots
16
zeta potential
8
carbon-dot pequi-nut
4
pequi-nut development
4
development immunosensor
4
immunosensor detect
4
detect pathogenic
4
pathogenic bacteria
4
carbon
4
bacteria carbon
4

Similar Publications

Starch-based biopolymer films with nitrogen-doped carbon quantum dots for enhanced barrier functions via surface microarchitectures.

Int J Biol Macromol

September 2025

Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:

This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.

View Article and Find Full Text PDF

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Carbon quantum dot-aptamer/MoS nanosheet fluorescent sensor for ultrasensitive, noninvasive cortisol detection.

Anal Bioanal Chem

September 2025

Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.

This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.

View Article and Find Full Text PDF

Carbon-based nanoparticles possess distinctive chemical, physical, and biological characteristics that render them suitable for biomedical uses. This paper reviews recent advancements in carbon-based nanomaterial (CBs) synthesis methods, emphasizing the importance of careful modification for biomedical uses, particularly in the passivation of drugs and chemicals on their surfaces. This review article examines information from 2021-2024 regarding carbon-based nanoparticles and the biomedical uses of graphene, fullerene, carbon nanotubes, nano horns, nanodiamonds, quantum dots, and graphene oxide.

View Article and Find Full Text PDF

A mannose-functionalized carbon dot and boronic acid-graphene oxide nanocomposite fluorescent probe for detection.

Anal Methods

September 2025

State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.

Current detection methods for often suffer from lengthy procedures, significant technical limitations, high probe costs, and poor long-term storage stability. Herein, an "on-off-on" fluorescent probe is developed based on mannose-lectin recognition for the rapid and quantitative detection of . The probe utilizes mannose-grafted carbon dots (g-CDs-M), which specifically recognize through interaction with lectins on its surface.

View Article and Find Full Text PDF