Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biphasic calcium phosphate (BCP) is a bioceramic widely used in hard tissue engineering for bone replacement. BCP consists of β-tricalcium phosphate (β-TCP) - a highly soluble and resorbable phase - and hydroxyapatite (HA) - a highly stable phase, creating a balance between solubility and resorption, optimally supporting cell interactions and tissue growth. The β-TCP/HA ratio significantly affects the resorption, solubility, and cellular response, with a higher β-TCP ratio increasing resorption due to its solubility. BCP is commonly synthesized by calcining calcium-deficient apatite (CDA) at temperatures above 700 °C direct or indirect methods. This study investigated the effects of pH and sintering temperature on BCP synthesized wet precipitation, aiming to achieve an 80/20 β-TCP/HA ratio, which is known to be optimal for bone regeneration. By maintaining a constant Ca/P precursor ratio of 1.533, the optimal conditions were determined to be a pH of 5.5-6 and a sintering temperature of 900 °C, chosen to balance material stability and solubility. The successful synthesis was confirmed using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. At the same time, the material's physical and chemical properties were further characterized through scanning electron microscopy (SEM) and degradation studies in a simulated body fluid (SBF). tests demonstrated excellent cytocompatibility and osteogenic differentiation, while studies on rabbit femur defects demonstrated significant bone regeneration, with bone-to-tissue volume ratios exceeding 50% within four weeks. These results highlight the potential of BCPs in bone tissue engineering and biomaterials research.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4bm01179aDOI Listing

Publication Analysis

Top Keywords

bone regeneration
12
biphasic calcium
8
calcium phosphate
8
tissue engineering
8
β-tcp/ha ratio
8
resorption solubility
8
sintering temperature
8
bone
5
ratio
5
optimized synthesis
4

Similar Publications

Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.

View Article and Find Full Text PDF

Piezo1 promotes M1 macrophage polarization and impairs osteogenic differentiation in bone infection.

Biochim Biophys Acta Mol Basis Dis

September 2025

Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Xingang Road, Haizhu District, Guangzhou, 510317, PR China; Southern Medical University, No. 1023-1063, Satai South Road, Baiyun District, Guangzhou, 510515, PR China. Electronic addre

Background: Bone infection induces a strong inflammatory response and leads to impaired bone regeneration, in which macrophages sense mechanistic signals and modulate immune responses in the inflammatory microenvironment through Piezo1. Nonetheless, the regulatory role of Piezo1 in macrophages during bone infection remains elusive.

Methods: Rat models of infected bone defects were established for bulk RNA sequencing and single-cell RNA sequencing.

View Article and Find Full Text PDF

In recent years, the incidence of orthopedic diseases has increased significantly, while traditional treatments often face limitations such as limited efficacy and pronounced side effects. The development of nanomedicine technology provides novel strategies for orthopedic disease treatment. As an emerging two-dimensional (2D) nanomaterial, black phosphorus nanosheets (BPNS) demonstrate remarkable potential in treating orthopedic diseases due to their unique physicochemical properties, superior biocompatibility, and the fact that their degradation product-elemental phosphorus-constitutes an essential component of bone tissue.

View Article and Find Full Text PDF

Electroactive ceramic biomaterials on the principle of bone piezoelectricity towards advanced bone engineering.

Biomater Adv

September 2025

Graduate School of Medical and Dental Science, Institute of Science Tokyo, 15-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan; Advanced Central Research Organization, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo, 173-8605, Japan.

This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells.

View Article and Find Full Text PDF

The Effects of Mesenchymal Stem Cell-Derived Exosomes on the Attenuation of Dry Eye Disease in Sjögren Syndrome Animal Model.

Tissue Eng Regen Med

September 2025

Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #505 BanPo-Dong, SeoCho-Gu, Seoul, 06591, Republic of Korea.

Background: Sjögren's syndrome (SS) is a chronic autoimmune disease delineated by excessive lymphocyte infiltration to the lacrimal or salivary glands, leading to dry eye and dry mouth. Exosomes secreted from mesenchymal stem cells (MSC) are known to have anti-inflammatory and tissue regeneration abilities. This study endeavored to demonstrate the effect of MSC-derived exosomes on the clinical parameter of dry eyes and associated pathology in SS mouse model.

View Article and Find Full Text PDF