HN1 Functions in Protein Synthesis Regulation via mTOR-RPS6 Axis and Maintains Nucleolar Integrity.

Cell Prolif

Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Haematological and Neurological Expressed 1 (HN1) is an oncogene for various cancers and previously has been linked with centrosome clustering and cell cycle pathways. Moreover, HN1 has recently been reported to activate mTOR signalling, which is the regulator of ribosome biogenesis and maintenance. We explored the role of HN1 in mTOR signalling through various gain- and loss-of-function experiments using biochemical approaches in different cell lines. We demonstrated for the first time that HN1 is required for nucleolar organiser region (NOR) integrity and function. Immunoprecipitation-based association and colocalization studies demonstrated that HN1 is an important component of the mTOR-RPS6 axis, and its depletion results with reduced mRNA translation in mammalian cancer cell lines. This study also demonstrated that the depletion of HN1 leads to the irregular distribution of nucleolar structures, potentially leading to cell cycle deregulation as reported previously. Accordingly, components of the translation machinery aggregate with a distinct speckled pattern, lose their essential interactions and ultimately impair mRNA translation efficiency when the HN1 is depleted. These results suggest that HN1 is an essential component of the nucleolus, required for ribosome biogenesis as well as global mRNA translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179552PMC
http://dx.doi.org/10.1111/cpr.13805DOI Listing

Publication Analysis

Top Keywords

mrna translation
12
hn1
9
mtor-rps6 axis
8
cell cycle
8
mtor signalling
8
ribosome biogenesis
8
cell lines
8
hn1 functions
4
functions protein
4
protein synthesis
4

Similar Publications

Structure-Guided Engineering of a Bacterial Sesterterpene Synthase for Sesterviridene Diversification.

J Am Chem Soc

September 2025

Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn,Gerhard-Domagk-Straße 1,Bonn 53121,Germany.

Terpene synthases produce a remarkable structural diversity from acyclic precursors through complex carbocation cascades. Here, we report the crystal structure of the bacterial sesterterpene synthase StvirS bound to geranylfarnesyl thiopyrophosphate (GFSPP), revealing a preorganized active site that enforces a defined folding of the C25 backbone. Guided by this structure, active-site engineering at 11 positions yielded 23 enzyme variants and 13 new sesterterpenes.

View Article and Find Full Text PDF

DNA nanotechnology-enabled bioanalysis of extracellular vesicles.

Nanoscale Horiz

September 2025

Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Extracellular vesicles (EVs) have emerged as valuable sources for liquid biopsy in disease diagnostics, given their protein and nucleic acid cargoes (, miRNA, mRNA, glycoRNA) can serve as critical biomarkers. DNA nanotechnology, leveraging its inherent programmability, high specificity, and powerful signal amplification capability, offers a transformative approach for the bioanalysis of EVs. This review summarizes recent advances in DNA nanotechnology-based analytical methodologies for detecting EV-associated proteins and nucleic acids.

View Article and Find Full Text PDF

The Effect of Cachexia on the Feeding Regulation of Skeletal Muscle Protein Synthesis in Tumour-Bearing Mice.

J Cachexia Sarcopenia Muscle

September 2025

Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA.

Background: Cancer promotes muscle wasting through an imbalance in the tightly regulated protein synthesis and degradation processes. An array of intracellular signalling pathways, including mTORC1 and AMPK, regulate protein synthesis, and these pathways are responsive to the muscle's microenvironment and systemic stimuli. Although feeding and fasting are established systemic regulators of muscle mTORC1 and protein synthesis, the cancer environment's impact on these responses during cachexia development is poorly understood.

View Article and Find Full Text PDF

Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.

View Article and Find Full Text PDF

Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.

Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.

View Article and Find Full Text PDF