98%
921
2 minutes
20
Dermatologists have been interested in recent advancements in regenerative therapy. Current research is actively investigating the possibility of placental tissue derivatives to decelerate the skin aging process, enhance skin regeneration, reduce scarring, and prevent hair loss. Amniotic membranes (AM) play a crucial role in regenerative medicine as they serve as a suitable means of transporting stem cells, growth hormones, cytokines, and other essential compounds. Regulating an intricate network of biological processes improves the development and repair of tissues. Studies done by dermatologists indicate that several compounds found in the decidua, umbilical cord, and amniotic membrane have the potential to be used for regeneration. Examples include mesenchymal stem cells, growth factors, and immunomodulatory pharmaceuticals. Due to research and technological developments, scientists may use placental sections to facilitate skin regeneration, minimize scarring, and expedite wound healing. This study examines the current state of dermatological therapy, with a focus on using derivatives obtained from fetal tissue as the basis. The critical areas of study focus on this strategy are the potential benefits, growth opportunities, and recovery rates. Based on a thorough examination of the available literature and clinical data, we want to make definitive conclusions on the possible influence of fetal tissue derivatives in dermatological therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12015-024-10835-y | DOI Listing |
Dig Dis Sci
September 2025
Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.
Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.
Clin Oral Investig
September 2025
Department of Innovative Technologies in Medicine & Dentistry, "G. D'Annunzio" University, Via Dei Vestini 31, Chieti, Italy.
Objectives: This study aimed to compare the efficacy of the full-thickness palatal graft technique (FTPGT) and the coronally advanced flap with subepithelial connective tissue graft (CAF + SCTG) in achieving complete root coverage (CRC) in single gingival recessions (GR).
Methods: Forty healthy patients with a single RT1 GR were randomized into two groups: 20 treated with CAF + SCTG and 20 with FTPGT. Baseline and 12-month measurements of GR, keratinized tissue width (KTW), probing depth (PD), clinical attachment level (CAL), and gingival thickness (GT) were recorded.
Arch Orthop Trauma Surg
September 2025
Orthopaedics and traumatology, Salzburger Landeskliniken, Salzburg, Austria.
Purpose: The NOM (non-operative management) of distal radius fractures (DRF) is influenced by various factors. This study seeks to determine whether poor fracture alignment correlates with poor outcome.
Methods: Over a period of three years, a study was conducted on conservatively treated DRF involving 127 patients, 104 women (81.
FASEB J
September 2025
Department of Plastic Surgery and Burn, Third XiangYa Hospital, Central South University, Changsha, Hunan, China.
Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.
View Article and Find Full Text PDFFEMS Microbiol Lett
September 2025
Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Arthrospira platensis (Spirulina) is one the highly valuable cyanobacteria in food and pharmaceutical industry. The intracellular and extracellular polysaccharide (PS) extracts of A. platensis have been exhibited different biological functions.
View Article and Find Full Text PDF