98%
921
2 minutes
20
Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)). We show that individual macrophages can take up both SPIONs and drug-loaded NPs efficiently, thereby generating drug-loaded cells susceptible to AMF-induced cell death. Macrophages co-loaded with SPIONs and drug-containing IOH-NPs spontaneously released the drugs at similar rates irrespective of the application of an AMF. Notably, while the spontaneous drug release from macrophages co-loaded with SPIONs and drug-associated MSNs was low, AMF exposure accelerated the drug release. Thus, AMF exposure of SPION/drug-MSN coloaded macrophages provides a simple strategy for trigger-controlled drug release since it does not require any chemical modification of NPs or drugs. Thus, we assume that the coloading of different types of NPs will expand the potential of macrophages for drug delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213844 | PMC |
http://dx.doi.org/10.1007/s13346-024-01774-9 | DOI Listing |
OMICS
September 2025
Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India.
Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Osteoarthritis (OA) is a common degenerative joint disease, and early diagnosis and effective treatment are essential for managing its progression. This study focuses on the development of a novel drug delivery system using aggregation-induced emission (AIE) probe for enhanced fluorescence imaging and targeted therapy in OA. TPE-S-BTD, an AIE probe, is synthesized and characterized for its photophysical properties, demonstrating significant aggregation-induced fluorescence enhancement.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Objectives: To synthesize a temperature-responsive multimodal motion microrobot (MMMR) using temperature and magnetic field-assisted microfluidic droplet technology to achieve targeted drug delivery and controlled drug release.
Methods: Microfluidic droplet technology was utilized to synthesize the MMMR by mixing gelatin with magnetic microparticles. The microrobot possessed a magnetic anisotropy structure to allow its navigation and targeted drug release by controlling the temperature field and magnetic field.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China.
Objectives: To investigate the therapeutic mechanism of 2,6-dimethoxy-1,4-benzoquinone (DMQ) for alleviating dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice.
Methods: Eighteen male C57BL/6J mice were equally randomized into control group, DSS group and DMQ treatment group. In DSS and DMQ groups, the mice were treated with DSS in drinking water to induce UC, and received intraperitoneal injections of sterile PBS or DMQ (20 mg/kg) during modeling.
Turk J Pharm Sci
September 2025
Drugs Testing Laboratory, Department of Drugs Control, Bangalore, India.
Objectives: The study aimed to combine instant-release and mini-tablet methodologies to develop novel orally disintegrating mini-tablets (ODMTs) for a frequently pescribed antibiotic, cefixime trihydrate (CT), in paediatric patients.
Materials And Methods: CT-loaded microcapsules were prepared using Eudragit EPO and Hydroxy Propyl Methyl Cellulose E50 by spray drying technique. The optimized microcapsules were mixed with co-processed ready-to-use tableting excipients, Ludiflash and Pearlitol 200SD, in different proportions and then compressed into ODMTs and evaluated.