A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

BiFusionPathoNet: fusion network for drug-resistant bacteria identification optical scattering patterns. | LitMetric

BiFusionPathoNet: fusion network for drug-resistant bacteria identification optical scattering patterns.

Anal Methods

Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The presented research introduces a new method to identify drug-resistant bacteria rapidly with high accuracy using artificial intelligence combined with Multi-angle Dynamic Light Scattering (MDLS) signals and Raman scattering signals. The main research focus is to distinguish methicillin-resistant (MRSA) and methicillin-sensitive (MSSA). First, a microfluidic platform was developed embedded with optical fibers to acquire the MDLS signals of bacteria and Raman scattering signals obtained by using a Raman spectrometer. After that, for the detection of both scattering signals of MRSA and MSSA, three models were developed: (1) ResistNet, a hybrid model combining a Transformer Encoder with ResNet, with an accuracy of 83.8% on the MDLS dataset.; (2) SERB-CNN, which attained 91.84% accuracy on a Raman scattering public dataset and 93.5% on a custom-built dataset; and (3) BiFusionPathoNet, a multimodal fusion model that reached 96.8% accuracy, significantly outperforming single-modal approaches. The acquired results demonstrated the effectiveness of this multimodal strategy for the rapid detection of drug-resistant bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ay02074jDOI Listing

Publication Analysis

Top Keywords

drug-resistant bacteria
12
raman scattering
12
scattering signals
12
mdls signals
8
signals raman
8
scattering
6
signals
5
bifusionpathonet fusion
4
fusion network
4
network drug-resistant
4

Similar Publications