Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Lipopolysaccharide (LPS), a gut-derived endotoxin, is a recognized risk factor for both Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Rocaglamide-A (Roc-A), a natural compound derived from the genus Aglaia, is known for its pharmacological and immunosuppressive effects on various cell types. Although our recent investigations have unveiled Roc-A's anti-adipogenic role in adipocytes, its mechanism in hepatic inflammation remains elusive. This study delves into Roc-A's protective effects on LPS-induced hepatic inflammation. Our results demonstrated that Roc-A treatment significantly reduced the LPS-induced production of inflammatory cytokines in hepatocytes. Intriguingly, Roc-A decreased LPS-induced production of reactive oxygen species (ROS), upregulated antioxidant gene expression, and downregulated endoplasmic reticulum (ER) stress-related gene expression. Mechanistically, Roc-A significantly attenuated LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK) and activator protein-1 (AP-1). Notably, this effect was abolished by the JNK activator Anisomycin, while the JNK inhibitor SP600125 enhanced it. Furthermore, Roc-A suppressed the expression of NF-κB target genes, including inducible nitric oxide synthase (iNOS), thereby alleviating iNOS-derived nitric oxide (NO) production. These findings collectively indicate that Roc-A has the potential to alleviate LPS-induced nitrosative/oxidative stress and hepatic inflammation by inhibiting JNK phosphorylation. Thus, Roc-A emerges as a promising anti-inflammatory intervention for LPS-induced hepatic inflammation.

Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-024-00263-y.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717754PMC
http://dx.doi.org/10.1007/s43188-024-00263-yDOI Listing

Publication Analysis

Top Keywords

hepatic inflammation
16
lps-induced hepatic
12
liver disease
8
lps-induced production
8
gene expression
8
jnk activator
8
nitric oxide
8
lps-induced
7
roc-a
7
hepatic
5

Similar Publications

Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder caused by a deficiency of the hepatic peroxisomal enzyme alanine-glyoxylate aminotransferase (AGT), which catalyses the conversion of glyoxylate to glycine, resulting in increased oxalate production. The clinical consequences of the progressive build up of oxalates include nephrocalcinosis, nephrolithiasis, chronic kidney disease and ultimately renal failure with extra-renal involvement. The diagnosis of PH1 is challenging due to the non-specific nature of its symptoms and the need for costly genetic testing.

View Article and Find Full Text PDF

Connecting the Dots: Hepatic Steatosis as a Central Player in the Choreography of the Liver-Cardiovascular-Kidney-Metabolic Syndrome.

Heart Lung Circ

September 2025

Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a reach extending beyond the liver to include other metabolic syndrome-related disorders. Cardiovascular disease and type 2 diabetes mellitus are recognised non-communicable disorders and often downstream complications of MASLD and share similar risk factors. However, MASLD has not been afforded parity alongside other cardiometabolic non-communicable disorders, including the cardiovascular-kidney-metabolic (CKM) syndrome.

View Article and Find Full Text PDF

Introduction: Combined vascular endothelial growth factor/programmed death-ligand 1 blockade through atezolizumab/bevacizumab (A/B) is the current standard of care in advanced hepatocellular carcinoma (HCC). A/B substantially improved objective response rates compared with tyrosine kinase inhibitor sorafenib; however, a majority of patients will still not respond to A/B. Strong scientific rationale and emerging clinical data suggest that faecal microbiota transfer (FMT) may improve antitumour immune response on PD-(L)1 blockade.

View Article and Find Full Text PDF

Background: The gut-liver axis, pivotal in managing glucose balance and insulin responsiveness, is central to the development of type 2 diabetes mellitus (T2DM). Research has highlighted the regulatory effects of dietary alpha-linolenic acid (ALA), but it remains unclear how ALA modulates gut microbiota and liver inflammation in T2DM.

Purpose: This study aimed to systematically investigate ALA's influence on liver inflammation, intestinal barrier integrity, gut microbial composition, and metabolic homeostasis in T2DM, with a focus on the underlying molecular mechanisms.

View Article and Find Full Text PDF

Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.

View Article and Find Full Text PDF