98%
921
2 minutes
20
Brainprint recognition technology, regarded as a promising biometric technology, encounters challenges stemming from the time-varied, low signal-to-noise ratio of brain signals, such as electroencephalogram (EEG). Steady-state visual evoked potentials (SSVEP) exhibit high signal-to-noise ratio and frequency locking, making them a promising paradigm for brainprint recognition. Consequently, the extraction of time-invariant identity information from SSVEP EEG signals is essential. In this paper, we propose an Attentive Multi-sub-band Depth Identity Embedding Learning Network for stable cross-session SSVEP brainprint recognition. To address the issue of low recognition accuracy across sessions, we introduce the Sub-band Attentive Frequency mechanism, which integrates the frequency-domain relevant characteristics of the SSVEP paradigm and focuses on exploring depth-frequency identity embedding information. Also, we employ Attentive Statistic Pooling to enhance the stability of frequency domain feature distributions across sessions. Extensive experimentation and validation were conducted on two multi-session SSVEP benchmark datasets. The experimental results show that our approach outperforms other state-of-art models on 2-second samples across sessions and has the potential to serve as a benchmark in multi-subject biometric recognition systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717760 | PMC |
http://dx.doi.org/10.1007/s11571-024-10192-z | DOI Listing |
Cogn Neurodyn
December 2025
Department of Molecular Medicine, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome, 00185 Lazio region Italy.
Person identification method based on electroencephalograms (EEG) signals, or so called brainprint recognition is a novel way to distinguish identities with advantages of high security. However, existing methods neglect the distribution difference between training and test data, and the large distance between projected features in the latent space makes the performance of the model degrade in the unseen domain data. In this paper, we propose channel aggregated based generalized contrastive learning framework, which combines multiple modules to overcome this challenge.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
School of Computer Science, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China.
Brainprint recognition technology, regarded as a promising biometric technology, encounters challenges stemming from the time-varied, low signal-to-noise ratio of brain signals, such as electroencephalogram (EEG). Steady-state visual evoked potentials (SSVEP) exhibit high signal-to-noise ratio and frequency locking, making them a promising paradigm for brainprint recognition. Consequently, the extraction of time-invariant identity information from SSVEP EEG signals is essential.
View Article and Find Full Text PDFNeuroimage
July 2024
School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China. Electronic address:
In recent years, brainprint recognition has emerged as a novel method of personal identity verification. Although studies have demonstrated the feasibility of this technology, some limitations hinder its further development into the society, such as insufficient efficiency (extended wear time for multi-channel EEG cap), complex experimental paradigms (more time in learning and completing experiments), and unclear neurobiological characteristics (lack of intuitive biomarkers and an inability to eliminate the impact of noise on individual differences). Overall, these limitations are due to the incomplete understanding of the underlying neural mechanisms.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Brainprint recognition has received increasing attention in information security. Electroencephalography (EEG) signals measured under task-related or task-free conditions have been exploited as brain biometrics. However, what components make the uniqueness of one's brain signals remains unclear.
View Article and Find Full Text PDFBiology (Basel)
March 2023
Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China.
The important identity attribute of self-information presents unique cognitive processing advantages in psychological experiments and has become a research hotspot in psychology and brain science. The unique processing mode of own information has been widely verified in visual and auditory experiments, which is a unique neural processing method for own name, face, voice and other information. In the study of individual behavior, the behavioral uniqueness of self-information is reflected in the faster response of the human brain to self-information, the higher attention to self-information, and the stronger memory level of self-reference.
View Article and Find Full Text PDF