A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The neural oscillatory mechanism underlying human brain fingerprint recognition using a portable EEG acquisition device. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, brainprint recognition has emerged as a novel method of personal identity verification. Although studies have demonstrated the feasibility of this technology, some limitations hinder its further development into the society, such as insufficient efficiency (extended wear time for multi-channel EEG cap), complex experimental paradigms (more time in learning and completing experiments), and unclear neurobiological characteristics (lack of intuitive biomarkers and an inability to eliminate the impact of noise on individual differences). Overall, these limitations are due to the incomplete understanding of the underlying neural mechanisms. Therefore, this study aims to investigate the neural mechanisms behind brainwave recognition and simplify the operation process. We recorded prefrontal resting-state EEG data from 40 participants, which is followed up over nine months using a single-channel portable brainwave device. We found that portable devices can effectively and stably capture the characteristics of different subjects in the alpha band (8-13Hz) over long periods, as well as capturing their individual differences (no alpha peak, 1 alpha peak, or 2 alpha peaks). Through correlation analysis, alpha-band activity can reveal the uniqueness of the subjects compared to others within one minute. We further used a descriptive model to dissect the oscillatory and non-oscillatory components in the alpha band, demonstrating the different contributions of fine oscillatory features to individual differences (especially amplitude and bandwidth). Our study validated the feasibility of portable brainwave devices in brainwave recognition and the underlying neural oscillation mechanisms. The fine characteristics of various alpha oscillations will contribute to the accuracy of brainwave recognition, providing new insights for the development of future brainwave recognition technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2024.120637DOI Listing

Publication Analysis

Top Keywords

brainwave recognition
16
individual differences
12
underlying neural
8
neural mechanisms
8
portable brainwave
8
alpha band
8
alpha peak
8
peak alpha
8
recognition
6
brainwave
6

Similar Publications