98%
921
2 minutes
20
Bone fractures are a significant problem in Thoroughbred racehorses. The risk of fracture is influenced by both genetic and environmental factors. To determine the biological processes that are affected in genetically susceptible horses, we utilised polygenic risk scoring to establish induced pluripotent stem cells (iPSCs) from horses at high and low genetic risk. RNA-sequencing on iPSC-derived osteoblasts revealed 112 genes that were significantly differentially expressed. Forty-three of these genes have known roles in bone, 27 are not yet annotated in the equine genome and 42 currently have no described role in bone. However, many of the proteins encoded by the known and unknown genes have reported interactions. Functional enrichment analyses revealed that the differentially expressed genes were overrepresented in processes regulating the extracellular matrix and pathways known to be involved in bone remodelling and bone diseases. Gene set enrichment analysis also detected numerous biological processes and pathways involved in glycolysis with the associated genes having a higher expression in the iPSC-osteoblasts from horses with low polygenic risk scores for fracture. Therefore, the differentially expressed genes may be relevant for maintaining bone homeostasis and contribute to fracture risk. A deeper understanding of the consequences of mis-regulation of these genes and the identification of the DNA variants which underpin their differential expression may reveal more about the molecular mechanisms which are involved in equine bone health and fracture risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726005 | PMC |
http://dx.doi.org/10.1111/age.13504 | DOI Listing |
FASEB J
September 2025
Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
Severe burns are a major global health concern, and are associated with long-term physical and psychological impairments, multi-organ dysfunction, and substantial morbidity and mortality. While burn injuries in adults trigger systemic immuno-metabolic alterations-characterized by white adipose tissue browning, elevated resting energy expenditure, widespread catabolism, and inflammation-these adaptive responses are considerably impaired in older adults, with molecular mechanisms behind these differences remaining largely unclear. As a key regulator of systemic metabolism, investigating the pathological role of adipose tissue (AT) postburn may reveal novel targets that could potentially improve patient outcomes.
View Article and Find Full Text PDFISME J
September 2025
Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation.
View Article and Find Full Text PDFBackground: The goal was to explore the impact of the NR1D1 gene on the occurrence, development, and prognosis of colorectal cancer (CRC) using bioinformatics approaches.
Methods: CRC transcriptomic and clinical data from TCGA were analyzed to compare NR1D1 expression in tumors and various clinical stages. Survival differences between high and low NR1D1 expression groups were assessed using the R survival package.
Background: The lncRNA-miRNA-mRNA regulatory network is recognized for its significant role in cardiovascular diseases, yet its involvement in in-stent restenosis (ISR) remains unexplored. Our study aimed to investigate how this regulatory network influences ISR occurrence and development by modulating inflammation and immunity.
Methods: By utilizing data extracted from the Gene Expression Omnibus (GEO) database, we constructed the lncRNA-miRNA-mRNA regulatory network specific to ISR.
Gen Physiol Biophys
September 2025
The Second Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.
View Article and Find Full Text PDF