Quantifying DNA Lesions and Circulating Free DNA: Diagnostic Marker for Electropathology and Clinical Stage of AF.

JACC Clin Electrophysiol

Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.

Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.

Methods: High-sensitivity long-run real-time PCR was performed on mitochondrial (ND1) and nuclear (P53) DNA from atrial tissue samples from paroxysmal (PAF), persistent (PeAF), and longstanding persistent (LS-PeAF) AF, and sinus rhythm (SR) patients (n = 83). PicoGreen assay and quantitative polymerase chain reaction were used on circulating free DNA (cfDNA) markers (total cfDNA, β-globin, ND1, and P53) in blood samples of 70 patients with AF or SR. High-resolution epicardial mapping of the atria (n = 48) was conducted to quantify electrical conduction abnormalities.

Results: The number of DNA lesions gradually and significantly increased in PAF and PeAF and in patients with <3 years of AF compared with SR. In SR, the quantity of nuclear DNA damage significantly correlated with the proportion of fractionated potentials. Mitochondrial DNA lesions correlated with slower conduction velocity and lower potential amplitudes in AF samples. Also, mitochondrial cfDNA levels decreased in patients with >3 years of AF compared with <3 years of AF (P = 0.004).

Conclusions: The quantity of DNA lesions in atrial tissue samples is associated with atrial conduction abnormalities and stage of AF. Serum DNA damage markers discriminate short- from long-term AF. Therefore, the quantity of DNA damage may have diagnostic value in clinical AF management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacep.2024.10.008DOI Listing

Publication Analysis

Top Keywords

electrical conduction
12
atrial tissue
12
dna lesions
8
conduction abnormalities
8
dna damage
8
blood samples
8
dna
6
quantifying dna
4
lesions circulating free
4
circulating free dna
4

Similar Publications

Electrically Conductive Hydrogels for Wound Healing.

Adv Wound Care (New Rochelle)

September 2025

Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.

Wound healing is a complex, tightly regulated process involving a range of enzymes, growth factors, and cytokines that coordinate cellular activities essential for tissue repair and wound closure. However, in cases of extensive or severe injury, the intrinsic repair mechanisms are often insufficient, underscoring the need for advanced therapeutic strategies to accelerate healing and minimize scar formation. Electrically conductive hydrogels (ECHs), combining the advantageous properties of hydrogels with the physiological and electrochemical characteristics of conductive materials, present a safer and more convenient alternative to traditional electrode-based electrical stimulation (ES) for treating chronic and nonhealing wounds.

View Article and Find Full Text PDF

Origin and mitigation of the imprint effect in hafnia-based ferroelectrics.

Nanoscale

September 2025

School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China.

The potential of hafnia-based ferroelectric materials for Ferroelectric Random Access Memory (FeRAM) applications is limited by the imprint effect, which compromises readout reliability. Here, we systematically investigate the asymmetric imprint behavior in W/HfZrO/W ferroelectric capacitors, demonstrating that the imprint direction correlates directly with the ferroelectric polarization state. Notably, a pre-pulse of specific polarity can temporarily suppress the imprint effect.

View Article and Find Full Text PDF

This study presents a comprehensive first-principles and device-performance investigation of alkali metal-based anti-perovskites ZBrO (Z = K, Rb, Cs, and Fr) for advanced optoelectronic and photovoltaic applications. Using density functional theory (DFT) with GGA-PBE and mGGA-rSCAN functionals, we analyzed the structural, electronic, optical, mechanical, phonon, population, and thermoelectric properties of these compounds. All ZBrO materials exhibit direct band gaps and strong optical absorption in the visible-UV spectrum.

View Article and Find Full Text PDF

Chargeable Hydrogels with Dual Modulatory Effects of Bacterial Killing and Immune Remodeling toward Wound Healing.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200070, China.

Wound infections challenge clinical medicine, and developing novel therapies is critically important in overcoming antimicrobial resistance and an off-balanced immune microenvironment. Electrical stimulation as a biocompatible, easy-to-operate, and controllable technique has great potential in eradicating pathogens and modulating the immune system. However, safe and soft platforms that integrate both bactericidal and immunological modulatory effects of electrical stimulation are rarely reported.

View Article and Find Full Text PDF

Background: Space exploration has progressed significantly, with increased human presence in orbit, the development of space stations, and the planning of increasingly prolonged missions. However, the space environment poses substantial physiological challenges, particularly for the cardiovascular system. According to NASA's Human Research Program, the five primary risks associated with human spaceflight are: (1) microgravity, (2) ionizing cosmic radiation, (3) isolation and confinement, (4) closed environmental systems, and (5) the great distance from Earth.

View Article and Find Full Text PDF