98%
921
2 minutes
20
High-pressure treatment was utilized in this study to produce high-quality, reduced-sodium pork gels with desirable texture and sensory properties, addressing the challenge of maintaining quality in low-sodium meat products to meet health-conscious consumer demands. High-pressure treatment applied within the range of 150-200 MPa significantly reduced cooking loss while maintaining moisture content and provided an ideal network structure for reduced-sodium pork gels. High-pressure treatment at up to 100-200 MPa, in combination with added sodium chloride and sodium polyphosphate, was evaluated for its effects on gel texture, with results indicating that high-pressure treatment significantly improved breaking stress (increased by 10.01% under 150 MPa and 14.66% under 200 MPa), modulus of elasticity (increased by 14.77% under 150 MPa and 24.17% under 200 MPa), and hardness (increased by 11.12% under 150 MPa and 11.45% under 200 MPa). Rheological characteristic measurements revealed that gel strength was highest at 150 MPa (G' = 443,000 Pa; G″ = 66,300 Pa and tanδ = 0.15), which showed higher G' and G″ values and similar tanδ compared to the 0.1 MPa, 2% NaCl + 0.5% SPP condition (G' = 334,000 Pa; G″ = 49,200 Pa; tanδ = 0.148). Protein analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a reduction in the α-actinin band with increased pressure, which suggested protein interactions were enhanced. Differential scanning calorimetry analysis indicated that protein denaturation occurred more readily at higher pressures (0.071 J/g at 0.1 MPa, 0.057 J/g at 150 MPa, and 0.039 J/g at 200 MPa). These findings underscore the value of treatment under high pressure at 150 MPa developing reduced-sodium meat products with desirable texture and flavor characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719936 | PMC |
http://dx.doi.org/10.3390/foods14010096 | DOI Listing |
Food Res Int
November 2025
Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, São Paulo, Brazil. Electronic address:
The hydrolysis of biomass in fermentative processes often faces the difficulty of generating inhibitory products. Its reduction or removal is essential to enable the use of agro-industrial waste, such as cashew apple bagasse. Therefore, this study aimed to find an optimized condition for the hydrolysis of cashew apple bagasse by subcritical water and to introduce an in-line pre-purification process.
View Article and Find Full Text PDFFood Res Int
November 2025
Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China. Electronic address:
This study employed high-pressure microfluidization (HPM) to facilitate the Maillard reaction between quinoa protein (QP) and dextran (DX), systematically examining the effects of various pressures on the conjugate's physicochemical properties. Fourier transform infrared spectroscopy confirmed the formation of QP-DX conjugates, characterized by a new peak at 1149 cm (covalent CN bond). Secondary and tertiary structure analyses revealed that HPM-assisted Maillard reaction partially unfolded QP molecules, enhancing conformational flexibility and interfacial properties.
View Article and Find Full Text PDFAm J Prev Cardiol
September 2025
Department of Nutrition, School of Public Health, Guangzhou Medical University, Guangzhou, China.
Background: Evidence regarding the effect of physical activity (PA) on the risk of cardiovascular disease (CVD) among patients with metabolic dysfunction-associated steatotic liver disease (MASLD) is scarce. We aimed to clarify the role of PA in preventing CVD in patients with MASLD and provide insights into PA recommendations specific to this patient group.
Methods: This study conducted two cohort studies of 112,872 subjects with MASLD using questionnaire-measured PA data and 22,426 subjects with MASLD using accelerometer-measured PA data.
Sci Rep
August 2025
College of Mining, Liaoning Technical University, Fuxin, 123000, China.
When roadways in strong mine pressure working faces traverse collapse columns, the complex stress redistribution frequently induces surrounding rock instability and support structure failure. This study investigates the 2702 intake airway crossing the X26 collapse column (75.8 m wide) at Zhangcun Coal Mine through an integrated approach combining theoretical analysis, numerical modeling, and field validation.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Faculty of Civil Engineering, Cracow University of Technology, 31-155 Kraków, Poland.
This paper presents the effect of specimens' shape and size on the modulus of elasticity and compressive strength of high strength concrete. The European Standard EN 12390-13 allows not only for different procedures but also for different shapes and sizes of test specimens. However, it does not provide a relationship between specimen size and shape and elastic modulus.
View Article and Find Full Text PDF