Enantioselective Synthesis of Nonfused Eight-Membered O-Heterocycles by Sequential Catalysis.

Org Lett

Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This work describes a chiral bifunctional squaramide/DBU sequential catalytic strategy for the enantioselective synthesis of nonfused chiral eight-membered O-heterocycles through the asymmetric addition of ynones to β,γ-unsaturated α-ketoesters followed by the regio- and diastereoselective cyclization of the adduct intermediates. Mechanistic experiments revealed that an isomerization process should be involved in the ring formation step, and the origin of the high regioselectivity and diastereoselectivity has also been elucidated by the DFT calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c04253DOI Listing

Publication Analysis

Top Keywords

enantioselective synthesis
8
synthesis nonfused
8
eight-membered o-heterocycles
8
nonfused eight-membered
4
o-heterocycles sequential
4
sequential catalysis
4
catalysis work
4
work describes
4
describes chiral
4
chiral bifunctional
4

Similar Publications

ConspectusHydroaminoalkylation, the catalytic addition of amines to alkenes, has evolved as a powerful tool in modern synthetic chemistry, offering an atom-economic and green approach to the construction of C-C bonds. This reaction enables the direct amine functionalization of alkenes and alkynes without the need for protecting groups, directing groups, or prefunctionalization, thereby eliminating stoichiometric waste and minimizing synthetic steps. Over the past two decades, significant advances in catalyst development and mechanistic understanding have expanded the scope of hydroaminoalkylation, allowing for control over regio-, diastereo-, and enantioselectivity.

View Article and Find Full Text PDF

The Mukaiyama-Michael (M-M) reaction is a powerful approach for carbon-carbon bond formation and can provide access to all-carbon quaternary centers and vicinal stereocenters. The use of chiral catalysts for this transformation has enabled the development of efficient asymmetric methods in which the reaction proceeds with high enantioselectivity in the presence of only a substoichiometric amount of the chiral promoter. Both chiral Lewis acid catalysts and organocatalysts have been employed.

View Article and Find Full Text PDF

A novel Ru-catalyzed asymmetric transfer hydrogenation (ATH) strategy has been developed for the efficient synthesis of valuable chiral α-aminophosphonates from readily available α-iminophosphonates. This method enables the conversion of both acyclic and cyclic substrates in high yields (up to 97%) and excellent enantioselectivities (up to >99:1), providing a practical entry to phosphorus-containing chiral amines. Notably, this is the first reported application of ATH to α-iminophosphonates, offering a robust and operationally convenient alternative to conventional asymmetric hydrogenation (AH) approaches.

View Article and Find Full Text PDF

Recent Developments in Catalytic Asymmetric Aziridination.

Top Curr Chem (Cham)

September 2025

Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006, Vitoria-Gasteiz, Spain.

Aziridines, structurally related to epoxides, are among the most challenging and fascinating heterocycles in organic chemistry due to their increasing applications in asymmetric synthesis, medicinal chemistry, and materials science. These three-membered nitrogen-containing rings serve as key intermediates in the synthesis of chiral amines, complex molecules, and pharmaceutically relevant compounds. This review provides an overview of recent progress in catalytic asymmetric aziridination, focusing on novel methodologies, an analysis of the scope and limitations of each approach, and mechanistic insights.

View Article and Find Full Text PDF

Enantioselective Construction of Fused N-Heterocycles Sequential Annulation and Catalytic Transfer Hydrogenation.

Org Lett

September 2025

Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China.

Herein, we report the first regio- and enantioselective synthesis of tetrahydropyrido[2,3-]pyrazines using a chiral iridacycle catalyst. Pyridyl diamines and diketones undergo sequential annulation and asymmetric transfer hydrogenation of the generated pyrido[2,3-]pyrazine intermediates. This method provides diverse fused N-heterocycles in high yields (up to 95%) and enantioselectivity (98.

View Article and Find Full Text PDF