98%
921
2 minutes
20
Aims: Acute heart failure (AHF) poses significant diagnostic challenges in the emergency room (ER) because of its varied clinical presentation and limitations of traditional diagnostic methods. This study aimed to develop and evaluate a deep learning model using electrocardiogram (ECG) data to enhance AHF identification in the ER.
Methods And Results: In this retrospective cohort study, we analysed the ECG data of 19 285 patients who visited ERs of three hospitals between 2016 and 2020; 9119 with available left ventricular ejection fraction and N-terminal prohormone of brain natriuretic peptide level data and who were diagnosed with AHF were included in the study. We extracted morphological and clinical parameters from ECG data to train and validate four machine learning models: baseline linear regression and more advanced models including XGBoost, Light GBM, and CatBoost. The CatBoost algorithm outperformed other models, showing superior area under the receiver operating characteristic and area under the precision-recall curve diagnostic accuracy across both internal (0.89 ± 0.01 and 0.89 ± 0.01) and external (0.90 and 0.89) validation data sets, respectively. The model demonstrated high accuracy, precision, recall, and f1 score, indicating robust performance in AHF identification.
Conclusion: The developed machine learning model significantly enhanced AHF detection in the ER using conventional 12-lead ECGs combined with clinical data. These findings suggest that ECGs, a common tool in the ER, can effectively help screen for AHF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ehjacc/zuaf001 | DOI Listing |
Neural Netw
September 2025
School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.
View Article and Find Full Text PDFComput Biol Med
September 2025
Department of Electrical and Computer Engineering and the Institute of Biomedical Engineering, University of New Brunswick, Fredericton, E3B 5A3, NB, Canada.
Pattern recognition-based myoelectric control is traditionally trained with static or ramp contractions, but this fails to capture the dynamic nature of real-world movements. This study investigated the benefits of training classifiers with continuous dynamic data, encompassing transitions between various movement classes. We employed both conventional (LDA) and deep learning (LSTM) classifiers, comparing their performance when trained with ramp data, continuous dynamic data, and an LSTM pre-trained with a self-supervised learning technique (VICReg).
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.
Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.
Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.
JMIR Med Inform
September 2025
Department of Hepatobiliary and Vascular Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
Background: Primary liver cancer, particularly hepatocellular carcinoma (HCC), poses significant clinical challenges due to late-stage diagnosis, tumor heterogeneity, and rapidly evolving therapeutic strategies. While systematic reviews and meta-analyses are essential for updating clinical guidelines, their labor-intensive nature limits timely evidence synthesis.
Objective: This study proposes an automated literature screening workflow powered by large language models (LLMs) to accelerate evidence synthesis for HCC treatment guidelines.