Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anorexia is a major cause of cancer cachexia and is induced by growth differentiation factor-15 (GDF15), which activates the rearranged during transfection (RET) protein tyrosine kinase in the hindbrain through GDF family receptor α-like (GFRAL), raising the possibility of targeting RET for cancer cachexia treatment. RET-altered cancer patients treated with RET-selective kinase inhibitors gain weight, however, it is unclear whether this results from tumor regression that improves the overall health of patients. Thus, the potential of using a RET inhibitor to address cancer cachexia remains unknown. Using a RET-negative tumor model, we evaluated the activity of the RET-selective inhibitor selpercatinib (LOXO-292) against cancer cachexia. In tumor-bearing animals, selpercatinib significantly increased food consumption, skeletal muscle mass and strength, adipose tissues, and body temperature, as well as reducing body weight loss, without significantly affecting tumor growth. Transcriptomes of skeletal muscle from mock-treated tumor-bearing mice were enriched in starvation and muscle atrophy genes, whereas those from selpercatinib-treated mice were enriched in myoblast proliferation, gluconeogenesis, and insulin receptor signaling genes. In parallel, retrospective analysis of weight gain in selpercatinib-treated patients showed that weight gain was not correlated with tumor response to selpercatinib. Our data demonstrate that selpercatinib could alleviate anorexia and cancer cachexia in an animal model and that weight gain in selpercatinib-treated patients is not dependent on tumor regression. These results identify a RET inhibitor as the first protein tyrosine kinase inhibitor for mitigating cancer cachexia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228837PMC
http://dx.doi.org/10.1016/j.canlet.2025.217444DOI Listing

Publication Analysis

Top Keywords

cancer cachexia
28
weight gain
12
cancer
8
tumor model
8
protein tyrosine
8
tyrosine kinase
8
tumor regression
8
ret inhibitor
8
skeletal muscle
8
mice enriched
8

Similar Publications

Cancer cachexia is a highly debilitating clinical syndrome of involuntary body mass loss featuring profound muscle wasting leading to high mortality. Notably, cardiac wasting is prominent in cancer patients and cancer survivors. Cachexia studies present significant challenges due to the absence of human models and mainly short-term animal studies.

View Article and Find Full Text PDF

Background: Combination therapy with enfortumab vedotin plus pembrolizumab (EV+P) is now the preferred first-line (1L) therapy for advanced urothelial carcinoma (aUC), but prognostic indicators for patients on 1L EV+P have not yet been described.

Patients And Methods: We conducted a retrospective cohort study of patients receiving 1L EV+P for aUC. We analyzed deidentified electronic health record data from the Flatiron Health database to identify adults with aUC who initiated EV+P between April 3, 2023 and December 31, 2024.

View Article and Find Full Text PDF

Purpose: There are no methods for assessing the need for multimodal care in cancer cachexia. We examined nine components in evaluating needs among advanced cancer patients.

Methods: This was a self-administered survey.

View Article and Find Full Text PDF

Eggs play an important role in skeletal muscle development, but their active components are unknown. The aim of this study was to investigate the effect of yolk extract-derived vitellogenin 2 on dexamethasone (DEX)- and cancer cachexia (CC)-induced skeletal muscle atrophy. We used iTRAQ to detect the changes in protein expression between fertilized egg yolk extract (FEYE) and unfertilized egg yolk extract (UEYE).

View Article and Find Full Text PDF