SEE: A Method for Predicting the Dynamics of Chromatin Conformation Based on Single-Cell Gene Expression.

Adv Sci (Weinh)

State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dynamics of chromatin conformation involve continuous and reversible changes within the nucleus of a cell, which participate in regulating processes such as gene expression, DNA replication, and damage repair. Here, SEE is introduced, an artificial intelligence (AI) method that utilizes autoencoder and transformer techniques to analyze chromatin dynamics using single-cell RNA sequencing data and a limited number of single-cell Hi-C maps. SEE is employed to investigate chromatin dynamics across different scales, enabling the detection of (i) rearrangements in topologically associating domains (TADs), and (ii) oscillations in chromatin interactions at gene loci. Additionally, SEE facilitates the interpretation of disease-associated single-nucleotide polymorphisms (SNPs) by leveraging the dynamic features of chromatin conformation. Overall, SEE offers a single-cell, high-resolution approach to analyzing chromatin dynamics in both developmental and disease contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848634PMC
http://dx.doi.org/10.1002/advs.202406413DOI Listing

Publication Analysis

Top Keywords

chromatin conformation
12
chromatin dynamics
12
dynamics chromatin
8
gene expression
8
chromatin
7
dynamics
5
method predicting
4
predicting dynamics
4
conformation based
4
single-cell
4

Similar Publications

Small-scale in situ Hi-C protocol for early embryos to resolve the three-dimensional genome structure.

STAR Protoc

September 2025

College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China. Electronic address:

High-throughput chromosome conformation capture (Hi-C) provides genome-wide insights into chromatin interactions within the three-dimensional structure of the nucleus, making it a powerful tool for studying genome architecture. Here, we provide a modified in situ Hi-C protocol for small cell numbers, utilizing 50-100 embryonic cells at the 8-cell stage to investigate chromatin organization during bovine early embryonic development. This protocol overcomes the challenges of limited sample availability and offers valuable insights into chromatin dynamics during bovine early embryogenesis.

View Article and Find Full Text PDF

Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) relevant to osteoporosis have identified hundreds of loci; however, understanding how these variants influence the phenotype is complicated because most reside in non-coding DNA sequence that serves as transcriptional enhancers and repressors. To advance knowledge on these regulatory elements in osteoclasts (OCs), we performed Micro-C analysis, which informs on the genome topology of these cells and integrated the results with transcriptome and GWAS data to further define loci linked to BMD. Using blood cells isolated from 4 healthy participants aged 31-61 yr, we cultured OC in vitro and generated a Micro-C chromatin conformation capture dataset.

View Article and Find Full Text PDF

Glioblastoma (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterised by profound genetic, epigenetic, and phenotypic heterogeneity. Recent advancements in high-resolution genome mapping have unveiled the critical role of three-dimensional (3D) chromatin architecture-encompassing chromatin loops, topologically associating domains, and enhancer-promoter interactions-in driving GBM tumourigenesis and therapy resistance. This review summarises recent insights into the mechanistic contribution of 3D genome reorganisation in sustaining oncogenic transcriptional programs, promoting intratumoural heterogeneity, and facilitating adaptive resistance.

View Article and Find Full Text PDF

Background: DNA G-quadruplexes (G4s) are non-canonical secondary structures formed in guanine-rich DNA sequences and play important roles in modulating biological processes through a variety of gene regulatory mechanisms. Emerging G4 profiling allows global mapping of endogenous G4 formation.

Results: Here in this study, we map the G4 landscapes in adult skeletal muscle stem cells (MuSCs), which are essential for injury-induced muscle regeneration.

View Article and Find Full Text PDF