98%
921
2 minutes
20
Adversarial training has become a primary method for enhancing the robustness of deep learning models. In recent years, fast adversarial training methods have gained widespread attention due to their lower computational cost. However, since fast adversarial training uses single-step adversarial attacks instead of multi-step attacks, the generated adversarial examples lack diversity, making models prone to catastrophic overfitting and loss of robustness. Existing methods to prevent catastrophic overfitting have certain shortcomings, such as poor robustness due to insufficient strength of generated adversarial examples, and low accuracy caused by excessive total perturbation. To address these issues, this paper proposes a fast adversarial training method-fast adversarial training with adaptive similarity step size (ATSS). In this method, random noise is first added to the input clean samples, and the model then calculates the gradient for each input sample. The perturbation step size for each sample is determined based on the similarity between the input noise and the gradient direction. Finally, adversarial examples are generated based on the step size and gradient for adversarial training. We conduct various adversarial attack tests on ResNet18 and VGG19 models using the CIFAR-10, CIFAR-100 and Tiny ImageNet datasets. The experimental results demonstrate that our method effectively avoids catastrophic overfitting. And compared to other fast adversarial training methods, ATSS achieves higher robustness accuracy and clean accuracy, with almost no additional training cost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706396 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317023 | PLOS |
Comput Methods Biomech Biomed Engin
September 2025
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.
Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
Background: Integrated mode proton imaging is a clinically accessible method for proton radiographs (pRads), but its spatial resolution is limited by multiple Coulomb scattering (MCS). As the amplitude of MCS decreases with increasing particle charge, heavier ions such as carbon ions produce radiographs with better resolution (cRads). Improving image resolution of pRads may thus be achieved by transferring individual proton pencil beam images to the equivalent carbon ion data using a trained image translation network.
View Article and Find Full Text PDFAm J Perinatol
September 2025
Division of Maternal and Fetal Medicine, OB/GYN and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio, United States.
This study aimed to characterize the risk of adverse pregnancy outcomes among patients with congenital uterine anomalies (CUA) using electronic health record data.Retrospective cohort study utilizing the TriNetX analytics research network, including female patients aged 10 to 55 with a documented singleton and intrauterine pregnancy.A total of 561,440 patients met inclusion criteria, of whom 3,381 (0.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Computer Science and Engineering, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India.
Deepfakes pose critical threats to digital media integrity and societal trust. This paper presents a hybrid deepfake detection framework combining Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) to address challenges in scalability, generalizability, and adversarial robustness. The framework integrates adversarial training, a temporal decay analysis model, and multimodal detection across audio, video, and text domains.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 5735 S. Ellis Ave., SCL 123, Chicago, Illinois 60637, USA.
Molecular dynamics simulations are essential for studying complex molecular systems, but their high computational cost limits scalability. Coarse-grained (CG) models reduce this cost by simplifying the system, yet traditional approaches often fail to maintain dynamic consistency, compromising their reliability in kinetics-driven processes. Here, we introduce an adversarial training framework that aligns CG trajectory ensembles with all-atom (AA) reference dynamics, ensuring both thermodynamic and kinetic fidelity.
View Article and Find Full Text PDF