Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Inflammatory bowel disease (IBD) is a persistent inflammation of the digestive system, and Mesenchymal Stem Cells (MSCs) and their exosomes have demonstrated potential as treatments for this condition. The objective of this research was to examine the possible effectiveness of intraperitoneal injection of umbilical cord-MSCs (UC-MSCs) and their exosomes through a two-time injection regimen in a mouse model.

Method: In this study, an animal model of a specific type of IBD in C57BL/6 mice, induced by dextran sulfate sodium (DSS), was utilized. The mice were treated with MSCs, exosomes, Mesalazine, and a combination of them. Upon sacrificing the mice, colon and spleen tissues were isolated to assess the changes in the mice's weight, colon length, spleen weight, and colitis' pathological symptoms. IL-10 and IL-17 levels were measured, and Treg and Th17 cell percentages were determined as well. Furthermore, colon tissue was stained to investigate histopathological changes.

Results: In the groups that received MSCs, there was a significant reduction in the disease activity index and their combinations with exosomes and Mesalazine compared to the colitis group. Colon length increased in all groups except the exosome group. Histological measures were notably reduced in the MSC groups and their combinations. Significant increases in the IL-10 level of colon tissue and the proportion of Treg present in the spleen were observed in the groups receiving MSC and combination treatment. Furthermore, these groups showed a notable reduction in the percentage of spleen Th17 cells. However, IL17A decreased non-significantly in all groups.

Conclusion: The results showed that intraperitoneal injection of UC-MSCs and their combination with exosome and Mesalazine in a murine colitis model improved the disease's symptoms. Therefore, MSCs and their combination with exosomes can be a promising therapeutic approach along with other common drugs for IBD, but exosomes alone could not significantly reduce the symptoms of colitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707839PMC
http://dx.doi.org/10.1186/s13287-024-04062-yDOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
stem cells
8
mscs exosomes
8
intraperitoneal injection
8
exosomes mesalazine
8
colon length
8
colon tissue
8
exosomes
7
ibd
5
colon
5

Similar Publications

Deciphering the molecular landscape of acute myeloid leukemia initiation and relapse: a systems biology approach.

Med Oncol

September 2025

Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.

View Article and Find Full Text PDF

Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.

View Article and Find Full Text PDF