Differential diversity and structure of autotrophs in agricultural soils of Qinghai Province.

Microbiol Spectr

Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: The biodiversity of CO-assimilating bacterial communities is pivotal for carbon sequestration in agricultural systems. Changes in the diversity, structure, and activity of the soil chemolithoautotrophic bacteria were examined in four agricultural areas, Dulan (DL), Gonghe (GH), Huzhu (HZ), and Datong (DT) counties in Qinghai Province, where wheat, oilseed rape, and barley were planted. This process was performed using Illumina amplicon sequencing of the ribulose-1,5-bisphosphatecarboxylase/oxygenase (RubisCO) gene ( Form I) and activity data. The diversity, community, and activity of soil autotrophic CO-fixing bacteria differed significantly across soil sites, whereas -bearing bacterial diversity and activity were similar across different crop types. RubisCO activity in the HZ region was significantly greater than in the other three regions ( < 0.001). The overall relative abundance trend of the bacterial taxa was similar among the three crop samples. Moreover, 31, 27, 10, and 8 significant linear discriminant analysis effect sizes were identified in the four regions collected from HZ, DL, DT, and GH, respectively. No significant biomarkers were detected in any of the crop groups. Some soil properties had significant relationships with the autotrophic bacterial community composition.

Importance: Agricultural soil plays important roles in carbon fixation during carbon capture and storage. Autotrophic bacteria that utilize inorganic compounds as electron donors for growth fix CO photosynthetically or chemo-autotrophically in diverse ecosystems and affect soil organic carbon sequestration. Soil properties, agronomic management measures, and environmental factors can influence the community composition, abundance, and activity of CO-assimilating bacteria. This study aims at evaluating the effects of different regions and crop types on the abundance, composition, and activity of CO-fixing bacteria in agricultural soil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792524PMC
http://dx.doi.org/10.1128/spectrum.02693-24DOI Listing

Publication Analysis

Top Keywords

diversity structure
8
qinghai province
8
carbon sequestration
8
soil
8
activity soil
8
co-fixing bacteria
8
crop types
8
soil properties
8
agricultural soil
8
activity
7

Similar Publications

Molecular Engineering Empowers Phenanthraquinone Organic Cathodes with Exceptional Cycling Stability for Lithium- and Aqueous Zinc-Ion Batteries.

Adv Sci (Weinh)

September 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.

Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.

View Article and Find Full Text PDF

Structure-Guided Engineering of a Bacterial Sesterterpene Synthase for Sesterviridene Diversification.

J Am Chem Soc

September 2025

Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn,Gerhard-Domagk-Straße 1,Bonn 53121,Germany.

Terpene synthases produce a remarkable structural diversity from acyclic precursors through complex carbocation cascades. Here, we report the crystal structure of the bacterial sesterterpene synthase StvirS bound to geranylfarnesyl thiopyrophosphate (GFSPP), revealing a preorganized active site that enforces a defined folding of the C25 backbone. Guided by this structure, active-site engineering at 11 positions yielded 23 enzyme variants and 13 new sesterterpenes.

View Article and Find Full Text PDF

Globular proteins as functional-mechanical materials: a multiscale perspective on design, processing, and applications.

Mater Horiz

September 2025

MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.

Globular proteins, traditionally regarded as non-structural biomolecules due to the limited load-bearing capacity in their monomeric states, are increasingly recognized as valuable building blocks for functional-mechanical materials. Their inherent bioactivity, chemical versatility, and structural tunability enable the design of materials that combine biological functionality with tailored mechanical performance. This review highlights recent advances in engineering globular proteins-spanning natural systems (serum albumins, enzymes, milk globulins, silk sericin, and soy protein isolates) to recombinant architectures including tandem-repeat proteins-into functional-mechanical platforms.

View Article and Find Full Text PDF

Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.

View Article and Find Full Text PDF

Soils harbor some of the most diverse microbiomes on Earth. Interactions within these microbial communities are often mediated by natural products, many functioning as chemical signals. Specialized metabolites known as arginoketides, or arginine-derived polyketides, have been linked to mediate these interactions.

View Article and Find Full Text PDF