Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy. This study examines the role of microglia and axonal guidance molecules in neuronal reorganization in TLE.

Methods: Nineteen hippocampal samples from patients with TLE undergoing epilepsy surgery were analyzed. Microglial activity (M1/M2-like microglia) and neuronal guidance molecules were assessed using microscopy and semi-automated techniques. Gene expression was evaluated using the nCounter Expression Profiling method.

Results: Neuronal cell loss was correlated with decreased activity of the M1 microglial phenotype. In the CA2 region, neuronal preservation was linked to increased mossy fiber sprouting and microglial presence. Neuronal markers such as Deleted in Colorectal Cancer (DCC) and Synaptopodin were reduced in areas of cell death, while Netrin-1 was elevated in the granule cell layer, potentially influencing mossy fiber sprouting. The nCounter analysis revealed downregulation of genes involved in neuronal activity (e.g., NPAS4, BCL-2, GRIA1) and upregulation of IκB, indicating reduced neuroinflammation.

Conclusions: This study suggests reduced neuroinflammation in areas of neuronal loss, while regions with preserved neurons showed mossy fiber sprouting associated with microglia, Netrin-1, and DCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672915PMC
http://dx.doi.org/10.3390/biomedicines12122869DOI Listing

Publication Analysis

Top Keywords

mossy fiber
20
fiber sprouting
20
temporal lobe
8
lobe epilepsy
8
netrin-1 dcc
8
gene expression
8
neuronal
8
neuronal loss
8
guidance molecules
8
mossy
5

Similar Publications

Recent evidence indicates that the concentration of ATP remains stable during neuronal activity due to activity-dependent ATP production. However, the mechanisms of activity-dependent ATP production remain controversial. To stabilize the ATP concentration, feedforward mechanisms, which may rely on calcium or the sodium-potassium pump, do not require changes in the ATP and ADP concentrations.

View Article and Find Full Text PDF

Drug-resistant epilepsy (DRE) is frequently characterized by pathological mossy fiber sprouting (MFS), which is a defining indicator of aberrant synaptic remodeling within the hippocampus. Despite extensive investigations of the molecular underpinnings of MFS, they remain only partially elucidated. Synaptic vesicle protein 2 A (SV2A) is a key modulator of neurotransmitter exocytosis that has been associated with epileptogenesis.

View Article and Find Full Text PDF

Aging-related adaptations of metabotropic glutamate receptors within the CA3 region of the rat hippocampus.

Neurobiol Aging

September 2025

Departamento de Farmacobiología. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 14330, Mexico. Electronic address:

The physiological decline associated with aging is often accompanied by a progressive deterioration in cognitive processing abilities driven by a series of cellular dysfunctions that remain poorly understood. In the hippocampus, a critical area for learning and memory, aging affects the functional expression of ionotropic and metabotropic receptors, including the metabotropic glutamate receptors (mGluRs). mGluRs play a critical role in multiple cellular functions, including modulation of ion channels and intrinsic excitability, synaptic transmission, and induction of synaptic plasticity, processes considered part of the cellular substrates for learning and memory.

View Article and Find Full Text PDF

Even though bats are the second most speciose group of mammals, neuroanatomical studies of their hippocampus are rare, particularly of small echolocating bats. Here, we provide a qualitative and quantitative neuroanatomical analysis of the hippocampus of small echolocating bats (Phyllostomidae and Vespertilionidae). Calcium-binding proteins revealed species- and family-specific patterns for calbindin and calretinin.

View Article and Find Full Text PDF

Deficiency of nNOS in adult-born dentate granule cells causes epilepsy.

Epilepsia Open

August 2025

Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.

Objective: This study aimed to elucidate the molecular role of neuronal nitric oxide synthase (nNOS, encoded by Nos1) in adult-born dentate granule cells (DGCs) during temporal lobe epilepsy (TLE).

Methods: We used GFP-expressing retrovirus (RV) to analyze morphological changes in DGCs. Nos1 knockout (Nos1) mice were generated to assess whether nNOS deficiency would induce mossy fiber sprouting (MFS), affect neurogenesis, and observe the morphological changes of DGCs.

View Article and Find Full Text PDF