98%
921
2 minutes
20
Background: The tiller number is a key agronomic trait for increasing the yield potential of wheat ( L.). A number of quantitative trait loci (QTLs) and key genes controlling tillering have been identified, but the regulatory mechanisms remain unclear.
Methods: In this study, we utilized the dwarf-monoculm mutant () obtained from the ethyl methane sulfonate (EMS)-treated wheat cultivar Guomai 301. The F populations were constructed using the mutant crossed to multiple tiller parents. The F populations were surveyed for tillering traits at the critical fertility stage for genetic analyses. The extreme-tillering-phenotype plants from the F population were used to construct mixing pools that were analyzed by a wheat 55K SNP array. The tillering genes of were mapped using the wheat 55K SNP array combined with transcriptomic data.
Results: The results showed that the genetic phenotype of is controlled by two dominant genes. The tillering genes of were mapped on the 60-100 Mb region of chromosome 5B and the 135-160 Mb region of chromosome 7A. A total of sixteen candidate genes associated with the tillering trait of were identified. Two candidate genes, TraesCS5B02G058800 and TraesCS7A02G184200, were predicted to be involved in indole acetic acid (IAA) response and transport, which were considered as potential regulatory genes.
Conclusions: This study elucidated the genetic basis of the mutant and provided two valuable reference genes for studying the development and regulatory mechanisms of wheat tillering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728102 | PMC |
http://dx.doi.org/10.3390/genes15121652 | DOI Listing |
Virchows Arch
September 2025
Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Av. Antônio Carlos, Pampulha, Belo Horizonte, 31270-901, Brazil.
Plasmablastic lymphoma (PBL) is a rare and aggressive non-Hodgkin lymphoma with a poor prognosis and short survival rates. It is classified as a large B-cell lymphoma subtype, but carries a plasmacytic immunophenotype. Therefore, PBL has pathogenetic overlaps with diffuse large B-cell lymphoma not otherwise specified (DLBCL NOS) and plasma cell neoplasms (PCNs).
View Article and Find Full Text PDFSignal Transduct Target Ther
September 2025
Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.
View Article and Find Full Text PDFJ Genet Genomics
September 2025
State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangd
The genetic basis of early-stage salt tolerance in alfalfa (Medicago sativa L.), a key factor limiting its productivity, remains poorly understand. To dissect this complex trait, we integrate genome-wide association study (GWAS) and transcriptomics (RNA-seq) from 176 accessions within a machine learning based genomic prediction framework.
View Article and Find Full Text PDFDev Biol
September 2025
School of Biological and Chemical Sciences, University of Galway, Biomedical Sciences Building, Newcastle Road, Galway H91 W2TY, Ireland. Electronic address:
The transcription factor Six1 and its co-activator Eya1 play central and varied roles during the development of sensory neurons derived from the cranial placodes in vertebrates. Previous studies suggested that these proteins promote both the maintenance of proliferative neuronal progenitors and neuronal differentiation. Context-specific interactions of Six1 and/or Eya1 with different cofactors are likely to contribute to the activation of distinct target genes during different stages of placodal neurogenesis.
View Article and Find Full Text PDFNeurobiol Dis
September 2025
Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA. Electronic address:
Temporal lobe epilepsy is associated with aberrant neurogenesis and ectopic migration of adult-born granule cells (abGCs), yet the molecular mechanisms driving these changes remain poorly defined. Using a pilocarpine-induced mouse model of temporal lobe epilepsy and chemogenetic silencing of abGCs via Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), we previously demonstrated that abGC inhibition reduces both ectopic migration and seizure susceptibility. To identify underlying molecular regulators, we performed RNA sequencing of FACS-isolated abGCs and identified Rrm2 and Timp3 as top candidate genes modulated by seizure activity and neuronal silencing.
View Article and Find Full Text PDF