98%
921
2 minutes
20
Pear fruit brown rot, caused by , affects pear fruit yields and quality. The present study determined T6 (T6) peptaibols as a biological control alternative to synthetic fungicides and assessed its efficacy against through dual plate culture and surface spraying at different concentrations. T6 peptaibols effectively inhibited growth, achieving an 85.99% inhibitory rate at 1250 µg/mL after inoculation on PDA medium for 5 days, and 84.57% control efficacy on pear fruit with the same concentration at 6 days. Treatment with T6 peptaibols significantly decreased the average contents of malondialdehyde (MDA) and hydrogen peroxide (HO), as well as electrolyte leakage, by 31.99%, 27.93%, and 21.00% from days 1 to 9 post-inoculation, respectively, in comparison to the negative control. Additionally, the average antioxidant enzyme activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and polyphenol oxidase (PPO) increased by 86.27%, 56.76%, 25.94%, and 47.88%, respectively; the average defense enzyme activities of phenylalanine ammonia-lyase (PAL), lipoxygenase (LOX), chitinase (CHI), and β-1,3-glucanase (β-Glu) increased by 63.00%, 55.70%, 26.19%, and 16.34%, respectively. Moreover, the expression levels of the antioxidant and defense-related genes (, , , , , , , ) were significantly upregulated by 2.80, 2.81, 3.03, 2.79, 3.37, 2.49, 2.73, and 1.83-folds at 3 days after inoculation compared to the negative control. Thus, T6 peptaibols effectively reduced the pathogen infection through growth inhibition and antioxidant defenses, thereby boosting fruit immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727213 | PMC |
http://dx.doi.org/10.3390/antiox13121517 | DOI Listing |
Plant Sci
September 2025
College of Plant Protection, Shenyang Agricultural University, Shenyang, China. Electronic address:
Lignin deposition in stone cells is critical for the quality of pear fruit. NADPH oxidase (RBOH), a membrane-bound respiratory burst oxidase homolog, enzymatically generates reactive oxygen species (ROS) to critically regulate diverse physiological processes in plants. Nevertheless, the genetic mechanisms that govern RBOH-regulated lignin biosynthesis in the context of stone cell formation remain inadequately elucidated.
View Article and Find Full Text PDFMol Hortic
September 2025
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 28 Gangwan Road, Zhengzhou, 450009, China.
Fruit domestication has long aimed to reduce bitterness, yet the molecular mechanisms behind this trait remain only partially understood. Wild apples and pears naturally accumulate high levels of bitter proanthocyanidins (PAs), also known as condensed tannins. In this study, a convergent domestication process was identified in both fruits, involving the selection of weak alleles of MYB transcription factors that regulate PA biosynthesis.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan.
Background: Pear scab, caused by Venturia nashicola, is one of the most serious diseases affecting Asian pear (Pyrus spp.) production. While single-gene resistance has been used in breeding, it is often overcome by evolving pathogens.
View Article and Find Full Text PDFInsect Sci
August 2025
School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia.
Bactrocera tryoni, the Queensland fruit fly, is among the most damaging insect pests to the Australian horticultural industry as larvae infest ripening fruits or vegetables prior to harvest. Genetic biocontrol using Sterile Insect Technique (SIT) programs have been used to successfully suppress populations, via mass release of factory-reared sterile males that mate with wild females. Bi-sex flies are currently used for releases, although the efficiency of these control programs could be improved through using genetic sexing strains that eliminate females early during development, as they are not required for SIT.
View Article and Find Full Text PDFMicroorganisms
August 2025
The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Private Bag 11600, Palmerston North 4442, New Zealand.
Apples and pears are among the most popular and frequently consumed fruits worldwide. The polyphenol and dietary fibre components of these fruits are known to influence the gut microbiota and the subsequent human health outcomes. This study investigated the effects of New Zealand grown apples and pears with differing polyphenol contents on the structure and function of the human gut microbiota.
View Article and Find Full Text PDF