98%
921
2 minutes
20
Artificial intelligence (AI) has significantly impacted various fields, including oncology. This comprehensive review examines the current applications and future prospects of AI in lung cancer research and treatment. We critically analyze the latest AI technologies and their applications across multiple domains, including genomics, transcriptomics, proteomics, metabolomics, immunomics, microbiomics, radiomics, and pathomics in lung cancer research. The review elucidates AI's transformative role in enhancing early detection, personalizing treatment strategies, and accelerating therapeutic innovations. We explore AI's impact on precision medicine in lung cancer, encompassing early diagnosis, treatment planning, monitoring, and drug discovery. The potential of AI in analyzing complex datasets, including genetic profiles, imaging data, and clinical records, is discussed, highlighting its capacity to provide more accurate diagnoses and tailored treatment plans. Additionally, we examine AI's potential in predicting patient responses to immunotherapy and forecasting survival rates, particularly in non-small cell lung cancer (NSCLC). The review addresses technical challenges facing AI implementation in lung cancer care, including data quality and quantity issues, model interpretability, and ethical considerations, while discussing potential solutions and emphasizing the importance of rigorous validation. By providing a comprehensive analysis for researchers and clinicians, this review underscores AI's indispensable role in combating lung cancer and its potential to usher in a new era of medical breakthroughs, ultimately aiming to improve patient outcomes and quality of life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700796 | PMC |
http://dx.doi.org/10.3389/fonc.2024.1486310 | DOI Listing |
Genome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFSurg Endosc
September 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Background: Surgical resection is the cornerstone for early-stage non-small cell lung cancer (NSCLC), with lobectomy historically standard. Evolving techniques have spurred debate comparing lobectomy and segmentectomy. This study analyzed early postoperative patient-reported symptoms and functional status in patients with early NSCLC undergoing either procedure.
View Article and Find Full Text PDFEnviron Geochem Health
September 2025
Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFVirchows Arch
September 2025
Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Lung adenocarcinoma (LUAD) associated with usual interstitial pneumonia (UIP) harbours distinct features compared to lung adenocarcinoma without UIP. Therefore, we aimed to characterise the tumour microenvironment of LUAD with UIP by focusing on cancer-associated fibroblasts (CAFs) and stromal composition. Immunohistochemistry was performed on 32 LUAD samples (16 each with and without UIP) to evaluate CAF marker expression and lymphocyte infiltration.
View Article and Find Full Text PDF