Analysis of printing temperature effect on texture modification: Potential of soy protein isolate-based bigel for swallowing-friendly food.

Int J Biol Macromol

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electro

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This work prepared the soy protein isolate (SPI)-beeswax-based bigel loaded with β-carotene, and the effect of printing temperature (PT) on texture regulation was investigated. During printing, increasing PT weakened the rheological properties and printability of ink. However, the mechanical strength and deformation resistance at non-linear regions of products were strengthened after printing. The more compact moisture binding state and stronger hardness and gumminess were found as PTs increased. Consequently, cold extrusion (PT at 25 °C) achieved the highest precision, and the product was classified as level-5 or level-6 minced and moist food under the International Dysphagia Diet Standardization Initiative (IDDSI) framework. Confocal laser scanning microscopy (CLSM) and Scanning electron microscope (SEM) showed that increasing PT might melt the beeswax-based oleogel and aggregate into larger particles during printing. After printing, the gathering particles would recrystallize and form the needle-like crystal with β/β' structure, as Polarized light microscopy (PLM) and X-ray diffraction (XRD) shown. This microstructure would provide the products with higher mechanical strength deliver β-carotene to the intestine and prolong the release behavior during digestion. This work provides new insight into achieving texture modification and tailoring high nutritional dysphagia diets by 3D printing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.139493DOI Listing

Publication Analysis

Top Keywords

printing temperature
8
temperature texture
8
texture modification
8
soy protein
8
mechanical strength
8
printing
6
analysis printing
4
modification potential
4
potential soy
4
protein isolate-based
4

Similar Publications

This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.

View Article and Find Full Text PDF

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.

View Article and Find Full Text PDF

Cyclization-enhanced photoactivatable reversible room-temperature phosphorescence for efficient real-time light printing.

Chem Sci

August 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 China +86

The construction of polymer-based photoactivated room-temperature phosphorescence systems remains a prominent research focus, yet the development of ultrafast activated systems under ambient conditions continues to pose a challenge. In this study, cyclized phenothiazine derivatives bearing diverse substituents are synthesized and incorporated into an amorphous polyvinyl alcohol (PVA) matrix, resulting in significantly enhanced dynamic photoactivation characteristics compared with those of their pristine monomeric counterparts. Under ambient conditions and 2 s irradiation, the lifetime and quantum yield of C[4]PTZ-OH@PVA increase by factors of 1.

View Article and Find Full Text PDF

Chocolate is often used in 3D food printing, however in 3D food printing cold extrusion systems, chocolate often faces the issue of temperature-induced clumping. To address this texture alteration, the method of adding oleogels is employed. This study examines the impact of monoglycerides (MAG), sucrose fatty acid ester (SE) and hydroxypropyl methylcellulose (HPMC) oleogels on the thermal and textural properties of 3D printed white and dark chocolates.

View Article and Find Full Text PDF