98%
921
2 minutes
20
Class III peroxidases (PRXs) play critical roles in plant growth and development by oxidizing various substrates with HO. Although many PRXs have been identified and their roles in biotic and abiotic stress responses have extensively investigated in plants. However, functional mechanisms of PRXs in seed development remain poorly understood. In this study, 14, 17, 9, and 13 PRX core genes were identified in Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum, and Gossypium raimondii, respectively. Phylogenetic analysis categorized PRXs core genes of cotton into five groups. Six of the GhPRX genes co-localized with quantitative trait loci (QTLs) associated with oil or seed size, and GhPRXR1-A showed significant high expression levels in developing ovules. Heterologous overexpression of GhPRXR1-A in Arabidopsis thaliana resulted in a significant increase in thousand seed weight (Col-0: 0.015 ± 0.00085 g vs. OE-GhPRXR1-A: 0.022 ± 0.0019 g). In addition, molecular mechanism assays revealed that GhPRXR1-A is directly activated by GhGATA1 and interacts with GhNFYC4, a transcription factor of the nuclear factor Y, C subunit family that has previously been reported to mediate seed development. Collectively, these findings suggest that GhPRXR1-A is a regulator of seed development in Arabidopsis and may have similar functional role in cotton seed contributing traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.139529 | DOI Listing |
Mol Psychiatry
September 2025
Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults.
View Article and Find Full Text PDFJ Plant Physiol
September 2025
Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
Weeds are one of the major constraints for wheat productivity, causing significant yield losses worldwide. While chemical control is the most used practice to overcome weed damage, its efficacy is challenged by increasing weed resistance to most used herbicides, which is an expanding phenomenon caused by herbicide overuse/misuse. Modern wheat varieties are less able to perceive the presence of weeds than old varieties and are therefore less competitive against them and require chemical control to ensure adequate yields.
View Article and Find Full Text PDFPlant J
September 2025
Rice Research Institute of Shenyang Agricultural University, Shenyang, 110 866, China.
Grain size is a crucial determinant of rice yield, yet the molecular mechanisms controlling this trait remain only partially understood. Here, we identified the JMJ720 locus as a key regulator of grain size through map-based cloning. The jmj720 mutant was found to exhibit significantly larger grains when compared to the wild type (WT).
View Article and Find Full Text PDFPlant J
September 2025
State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
Plants are constantly exposed to environmental changes and must respond carefully to ensure survival and growth. Under high temperatures, many plants exhibit a series of morphological and developmental adjustments, including increased hypocotyl and petiole elongation. These adaptations, collectively termed thermomorphogenesis, promote transpiration and water loss, thereby enhancing evaporative cooling.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
Background: DNA G-quadruplexes (G4s) are non-canonical secondary structures formed in guanine-rich DNA sequences and play important roles in modulating biological processes through a variety of gene regulatory mechanisms. Emerging G4 profiling allows global mapping of endogenous G4 formation.
Results: Here in this study, we map the G4 landscapes in adult skeletal muscle stem cells (MuSCs), which are essential for injury-induced muscle regeneration.