From microalgae to gastropods: Understanding the kinetics and toxicity of silver nanoparticles in freshwater aquatic environment.

Environ Pollut

Department F.-A. Forel for Environmental and Aquatic Sciences, Section Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH, 1211, Geneva, Switzerland. Electronic address:

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silver nanoparticles (AgNPs) are increasingly used in various consumer products and industrial applications, raising concerns about their environmental impact on aquatic ecosystems. This study investigated the physicochemical stability, trophic transfer, and toxic effects of citrate-coated AgNPs in a freshwater food chain including the diatom Cyclotella meneghiniana and the gastropod Lymnaea stagnalis. AgNPs remained stable in the exposure medium, with a minimal dissolution (<0.06%) after 24 h, indicating that particulate forms dominated during exposure. AgNPs inhibited the growth of C. meneghiniana without significantly affecting chlorophyll-a content or reactive oxygen species (ROS) production. Scanning electron microscopy revealed extracellular polymeric substance (EPS) secretion, which likely formed eco-coronas, reducing AgNPs bioavailability and oxidative damage. However, trace element analysis showed significant depletion of iron, manganese, and nickel, indicating early metabolic stress and redistribution of essential metals to support antioxidant defenses. In L. stagnalis, toxicokinetic analysis showed distinct patterns of Ag uptake and depuration across exposure routes. Waterborne and foodborne exposure resulted in similar and higher Ag accumulation compared to the combined group. Waterborne exposure showed the highest non-eliminable fraction and a bioconcentration factor (BCF) > 1, indicating efficient uptake and retention. Foodborne exposure exhibited a biomagnification factor (BMF) > 1, despite efficient elimination. Combined exposure had the highest depuration rate, with BCF >1 and BMF <1, reflecting reduced trophic transfer potential. Oxidative stress in L. stagnalis was highest during combined exposure, with increased ROS in hemolymph during uptake. Foodborne exposure caused prolonged immune stress, evidenced by elevated total antioxidant capacity (TAC) and protein levels. In the hepatopancreas, foodborne exposure during depuration led to increased lipid peroxidation and TAC, indicating oxidative and metabolic challenges specific to dietary exposure. These results highlighted the complex interactions of AgNPs with primary producers and consumers in freshwater ecosystems, emphasizing the need for multi-route assessments in nanoparticle risk evaluations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2025.125643DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
microalgae gastropods
4
gastropods understanding
4
understanding kinetics
4
kinetics toxicity
4
toxicity silver
4
nanoparticles freshwater
4
freshwater aquatic
4
aquatic environment
4
environment silver
4

Similar Publications

Introduction: Leukemia and radiation-induced liver toxicity are significant health challenges requiring effective therapeutic strategies. This study aimed to evaluate the therapeutic efficacy and radiosensitizing effects of Diosgenin-loaded silver nanoparticles (Dio-AgNPs) in ENU-induced leukemic mice, with a focus on their dual role in mitigating leukemia progression and γ-irradiation-induced hepatotoxicity.

Methods: Dio-AgNPs were synthesized and characterized using TEM, UV-Vis spectroscopy, FT-IR spectroscopy, and encapsulation efficiency analysis.

View Article and Find Full Text PDF

Composite films biobased on Prosopis nigra polysaccharide for potential sustainable food packaging.

Int J Biol Macromol

September 2025

Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Laboratorio de Biomateriales y Bioprocesos, Av. Belgrano y Pasaje Caseros, SM de Tucumán, 4000, Tucumán. R, Argentina; Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia. Laboratorio de Bioproceso

This study explores the use of plant-derived polysaccharides to develop bio-based films for food-packaging applications. A film-forming solution composed of Prosopis nigra biopolymer (PN-B), carboxymethyl cellulose (CMC), and glycerol was optimized by central composite design (CCD), resulting in two formulations: P1 and P11. The films were subsequently functionalized with silver nanoparticles (AgNPs) synthesized via chemical and biological routes.

View Article and Find Full Text PDF

Sustainable Antimicrobial Silver@MXene Nanofiber Membranes for Enhanced Photothermal Membrane Distillation Performance.

ACS Appl Mater Interfaces

September 2025

Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Solar-driven desalination has emerged as a sustainable and efficient solution for addressing global water scarcity, especially beneficial in remote, off-grid, and disaster-affected regions. Among emerging technologies, photothermal membrane distillation (PMD) stands out due to its effective solar-energy conversion, scalability, and simplicity. Here, we report a hybrid PMD membrane fabricated by electrospinning MXene (TiCT) nanosheets integrated with silver nanoparticles (AgNPs) onto a poly(vinylidene fluoride--hexafluoropropylene) (PH) substrate.

View Article and Find Full Text PDF

Target-Triggered Self-Assembly of Peptides with Silver Nanoparticles for Electrochemical Biosensing.

Chemistry

September 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.

Peptides have great potential in the design and fabrication of biosensors because of their high specificity, multifunctionality, and relatively low cost. In this paper, we report an electrochemical biosensor leveraging multifunctional peptides and silver nanoparticles for integrated target recognition, self-assembly, and signal output. As a proof of concept, we chose granzyme B (GrB) as a model target.

View Article and Find Full Text PDF

Cellulose nanofibers as effective mediator for optical chemical sensors for heavy metal ions detection.

Carbohydr Polym

November 2025

Department of Chemical Science and Technologies, University of Tor Vergata, Via della Ricerca Scientifica, 000133 Rome, Italy. Electronic address:

Two forms of nanocellulose-based sensing materials were developed for heavy metal ions (HMIs) detection: all-solid-state and suspension. In these materials, cellulose nanofibers (CNF), isolated from cellulose bleached pulp via homogenization, were employed as a support matrix. For all-solid-state optodes development free-base 5,10,15,20-tetraphenylporphyrin (TPP) and zinc-porphyrin derivative (ZnPC) were deposited on CNF support.

View Article and Find Full Text PDF