Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Artificial synapses for neuromorphic computing have been increasingly highlighted, owing to their capacity to emulate brain activity. In particular, solid-state electrolyte-gated electrodes have garnered significant attention because they enable the simultaneous achievement of outstanding synaptic characteristics and mass productivity by adjusting proton migration. However, the inevitable interface traps restrict the protons at the channel-electrolyte interface, resulting in the deterioration of synaptic characteristics. Herein, we propose a solid-state electrolyte-based artificial synaptic device with magnesium oxide (MgO) to achieve outstanding synaptic characteristics in humanlike mechanisms by reducing the interface trap density via dangling bond passivation. In addition, the feasibility of utilizing MgO as a proton reservoir, capable of supplying protons stably and maintaining the proton-electron coupling effect, is demonstrated. With the proton reservoir layer, a significantly greater number of conductance weight states, as well as long-term plasticity over 200 s, is achieved at a low operating power (250 fJ). Furthermore, a pattern recognition simulation is performed based on the synaptic characteristics of the proposed synaptic device, yielding a high pattern recognition accuracy of 94.03%. These results imply the potential for advancing high-performance neuromorphic computing systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c10732DOI Listing

Publication Analysis

Top Keywords

synaptic characteristics
16
proton reservoir
12
proton-electron coupling
8
artificial synaptic
8
neuromorphic computing
8
outstanding synaptic
8
synaptic device
8
pattern recognition
8
synaptic
7
enhancement proton-electron
4

Similar Publications

Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.

View Article and Find Full Text PDF

Recessive variants in TWNK cause syndromic and non-syndromic post-synaptic auditory neuropathy through MtDNA replication defects.

Hum Genet

September 2025

College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.

Recessive variants in TWNK cause syndromes arising from mitochondrial DNA (mtDNA) depletion. Hearing loss is the most prevalent manifestation in individuals with these disorders. However, the clinical and pathophysiological features have not been fully elucidated.

View Article and Find Full Text PDF

Photostimulation of locus coeruleus CA1 catecholaminergic terminals reversed Spatial memory impairment in an alzheimer's disease mouse model.

Psychopharmacology (Berl)

September 2025

División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.

Rationale: One of the earliest changes associated with Alzheimer's disease (AD) is the loss of catecholaminergic terminals in the cortex and hippocampus originating from the Locus Coeruleus (LC). This decline leads to reduced catecholaminergic neurotransmitters in the hippocampus, affecting synaptic plasticity and spatial memory. However, it is unclear whether restoring catecholaminergic transmission in the terminals from the LC may alleviate the spatial memory deficits associated with AD.

View Article and Find Full Text PDF

Pelvic visceromotor functions such as micturition are regulated by coordinated autonomic and somatic motor pathways from the central nervous system. The parasympathetic system induces detrusor muscle contraction while the somatic system facilitates relaxation of the external urethral sphincter, ensuring synchronized and efficient bladder emptying during the voiding process. This study explores the relationship between Barrington's nucleus corticotropin-releasing hormone (CRH)-ergic projections and the formation of perineural nets (PNNs) among spinal motoneurons, particularly parasympathetic preganglionic neurons in the intermediolateral nucleus (IML) and Onuf's nucleus during the maturation of the neural circuitry controlling pelvic visceromotor functions.

View Article and Find Full Text PDF

The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.

View Article and Find Full Text PDF