98%
921
2 minutes
20
The malignant interaction between tumor cells and immune cells is one of the important reasons for the rapid progression and refractoriness of glioblastoma (GBM). As an essential metabolic center of M2 macrophages, the inhibition of protein kinase RNA-like endoplasmic reticulum kinase (PERK) leads to the reduction of M2 macrophages. Nevertheless, the restriction of the blood-brain barrier (BBB) and non-specific cell targeting hinder the application of PERK inhibitors in GBM. Herein, the optimal NP-M-M2pep is developed successfully, which has shown the capacity of BBB penetration and specific targeting of M2 microglia. In addition to inhibiting the polarization of M2 microglia, the administration of iPERK@NP-M-M2pep reprogrammed M2 microglia into M1 ones in vitro via PERK/HIF-1α/glycolysis pathway. Efficient brain accumulation of nanoparticles is achieved after tail vein injection, with effective inhibition of GBM progression after one course of treatment. The glioma-associated microglia and macrophages (GAM) with M2 type are induced to M1 and the immunosuppressive TME is remodeled by upregulating immunostimulatory cells and downregulating immunosuppressive cells. In summary, the biomimetic membrane vesicles (BMVs) specifically delivered iPERK to GAMs offer an inspiring strategy to reprogram microglia polarization, re-educate immunosuppressive TME, and inhibit the progression of GBM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202404782 | DOI Listing |
Mater Today Bio
October 2025
Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China.
Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.
View Article and Find Full Text PDFNat Chem Biol
September 2025
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.
View Article and Find Full Text PDFExpert Opin Drug Deliv
September 2025
Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, PR China.
Introduction: Hematopoietic stem cell transplantation (HSCT) is a promising treatment option for hematological malignancies. Despite its curative potential, it faces clinical challenges, including relapse and graft-versus-host disease (GVHD). Systemic toxicity due to chemotherapy is a significant problem in patients with hematological malignancies.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Purpose: Tumor hypoxia is a key barrier to successful delivery and activity of anti-cancer agents. To tackle this, we designed hypoxia-responsive Au-PEI-Azo-mPEG nanoparticles (NPs) denoted as APAP NPs for targeted delivery of hypoxia-activated prodrug (HAP), tirapazamine (TPZ) to hypoxic breast cancer cells.
Methods: AuNPs were first synthesized.