98%
921
2 minutes
20
The concept of immunogenic cell death (ICD) induced by chemotherapy as a potential synergistic modality for cancer immunotherapy has been widely discussed. Unfortunately, most chemotherapeutic agents failed to dictate effective ICD responses due to their defects in inducing potent ICD signaling. Here, we report a dual-enzyme-instructed peptide self-assembly platform of (CPT-GFFpY-PLGVRK-Caps) that cooperatively utilizes camptothecin (CPT) and capsaicin (Caps) to promote ICD and engage systemic adaptive immunity for tumor rejection. Although CPT and Caps respectively prevent tumor progression by inhibiting type-I DNA topoisomerase and activating transient receptor potential cation channel subfamily V member 1 (TRPV1) for intracellular calcium overload, neither alone effectively stimulates sufficient ICD signaling to meet immunotherapeutic needs. , sequentially allowing an active Caps derivative of VRK-Caps and CPT to release extracellularly and intracellularly, can synergize two distinct apoptosis pathways stimulated by Caps and CPT to increase tumor immunogenicity and elicit systemic T-cell-based immunity. Consequently, facilitates the generation of improved tumor-specific cytotoxic T-cell responses and sustained immunological memory, successfully suppressing both primary and distant tumors. Moreover, can render tumors susceptible to PD-L1 blockade and synergize with an antiprogrammed cell death-ligand 1 (aPDL1) antibody for tumor inhibition. Combining two cancer chemotherapeutic drugs with low ICD-stimulating capacity using a peptide self-assembly strategy was demonstrated to boost ICD responses and potentiate cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c10119 | DOI Listing |
Biomacromolecules
September 2025
Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
Cyclic peptides (CPs) are versatile building blocks whose conformational constraints foster ordered supramolecular architectures with potential in biomedicine, nanoelectronics, and catalysis. Herein, we report the development of biomimetic antifreeze materials by conjugating CPs bearing ice-binding residues to 4-arm polyethylene glycol (PEG) via click chemistry. The concentration-dependent self-assembly of these CP-PEG conjugates induces programmable morphological transitions, forming nanotube networks above the critical aggregation concentration (CAC) and two-dimensional nanosheet networks near the CAC.
View Article and Find Full Text PDFMagn Reson Lett
May 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
The multiple oligopeptides have been regarded as promising alignment media due to their structural diverseness and tendency for self-assembly in solution. Herein, an assembled amphiphilic peptide alignment medium, i.e.
View Article and Find Full Text PDFChemistry
September 2025
State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
Peptides have great potential in the design and fabrication of biosensors because of their high specificity, multifunctionality, and relatively low cost. In this paper, we report an electrochemical biosensor leveraging multifunctional peptides and silver nanoparticles for integrated target recognition, self-assembly, and signal output. As a proof of concept, we chose granzyme B (GrB) as a model target.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China.
Chemotherapy is often hindered by systemic toxicity and poor selectivity. To address these issues, we develop an enzyme-responsive metallopeptide hydrogel (HY-Pd) that integrates enzyme-instructed self-assembly (EISA) and bioorthogonal catalysis for selective tumor-targeted prodrug activation. Upon exposure to alkaline phosphatase (ALP), which is overexpressed in osteosarcoma cells (Saos-2), HY-Pd selectively accumulates and self-assembles into catalytic nanofibers.
View Article and Find Full Text PDF