Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Previous animal studies have found a relationship between spatial frequency and myopia. New research in humans suggest that reduced high spatial content of the visual environment may be a contributing factor for myopia development. This study aims to review the literature and elucidate the potential biological mechanisms linking spatial frequency and myopia.

Methods: A systematic search was conducted across PubMed and Web of Science databases. The studies published from their inception to August 2024 that have explored the connection between spatial frequency and myopia. Only full-text articles in English were included. PRISMA was used for data validity.

Results: A total of 13 articles were included in this review, comprising seven animal model studies, four population-based studies, one pictorial analysis and one study on research design. Epidemiological evidence is comparatively limited and has only begun to emerge in recent years. Mid- to high spatial frequencies were found to play an important role in the emmetropization process of the eye. Low spatial frequencies can increase the risk of myopia incidence. Furthermore, the potential mechanisms of how spatial frequency affects myopia are summarized as visual information processing characteristics, eye accommodation function and eye movements, contrast sensitivity and relevant molecules involved in the pathway.

Conclusion: The evidence suggests that indoor spatial frequency may be related to the development of myopia. Further studies are warranted to understand if the incorporation of changes in indoor environments is helpful in the prevention and control of myopia.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aos.17437DOI Listing

Publication Analysis

Top Keywords

spatial frequency
24
frequency myopia
12
spatial
9
myopia
8
high spatial
8
spatial frequencies
8
studies
5
frequency
5
frequency environments
4
environments myopia
4

Similar Publications

Purpose: The ability to accurately detect and characterize intramammary micro- and macrocalcifications without ionized radiation has significant clinical implications for early breast cancer assessment. The aim of this prospective study was to investigate the feasibility of detecting intramammary calcifications using 3D multi-echo gradient echo (ME-GRE) magnitude and true susceptibility-weighted images (tSWI) compared to digital mammography (DM) in patients with different breast sizes and densities of breast parenchyma at 1.5T.

View Article and Find Full Text PDF

Spatial heterogeneity in the impacts of Ohio's enhanced graduated driver's licensing law on teen motor vehicle crashes.

J Safety Res

September 2025

Center for Injury Research and Policy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Division of Epidemiology, College of Public Health, USA.

Background: Graduated Driver's Licensing (GDL) policies create an intermediate licensure phase for young novice drivers, and previous studies suggested that they reduce teen motor- vehicle crashes (MVCs). Multiple studies have shown that the effects of GDL laws vary in association with demographic factors and location, motivating estimation of sub-state policy effects. The present study estimates county-level effects of Ohio's 2007 enhanced GDL law on MVCs among 16-17-year-olds.

View Article and Find Full Text PDF

Risk-field assessment for signalized intersections using surrogate safety measure.

J Safety Res

September 2025

Department of Civil Engineering, College of Engineering Trivandrum, Thiruvananthapuram, Kerala, India. Electronic address:

Introduction: Traffic signals are the controlling devices aimed to reduce crossing conflicts at intersections. However, rear-end and lane-changing conflicts at signalized intersection approaches are a significant problem. This work aims to proactively assess and spatially map the safety and risk at signalized intersection approaches by field data collection and microsimulation modeling using PTV-VISSIM.

View Article and Find Full Text PDF

Introduction: Pedestrian safety has become a critical concern with the rising global population of older adults. Older pedestrians face higher crash risks due to age-related physical limitations, yet road infrastructure often fails to address their specific needs. Most studies treat older adults as a single group, overlooking variations in mobility and behavior.

View Article and Find Full Text PDF

Deep feature extraction and swarm-optimized enhanced extreme learning machine for motor imagery recognition in stroke patients.

J Neurosci Methods

September 2025

Department of Computer Science and Engineering, IIT (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India. Electronic address:

Background: Interpretation of motor imagery (MI) in brain-computer interface (BCI) applications is largely driven by the use of electroencephalography (EEG) signals. However, precise classification in stroke patients remains challenging due to variability, non-stationarity, and abnormal EEG patterns.

New Methods: To address these challenges, an integrated architecture is proposed, combining multi-domain feature extraction with evolutionary optimization for enhanced EEG-based MI classification.

View Article and Find Full Text PDF